हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

From the curve y = |x|, draw y = |x + 1| − 1 - Mathematics

Advertisements
Advertisements

प्रश्न

From the curve y = |x|, draw y = |x + 1| − 1

आकृति
आलेख

उत्तर

y = |x|

y = `{{:(x,  "if"  x ≥ 0),(- x,  "if"  x < 0):}`

x 0 1 2 3 − 1 − 2 − 3
y 0 1 2 3 1 2 3

(a) Consider y = |x + 1|

y = `{{:((x + 1),  "if"  x + 1 ≥ 0),(-(x + 1),  "if"  x + 1 < 0):}`

y = `{{:(x + 1,  "if"  x ≥ - 1),(-(x + 1),  "if"  x < - 1):}`

x = 0 ⇒ y = x + 1 ⇒ y = 1

x = 1 ⇒ y = x + 1 ⇒ y = 2

x = 2 ⇒ y = x + 1 ⇒ y = 3

x = 3 ⇒ y = x + 1 ⇒ y = 4

x = – 1 ⇒ y = x + 1 ⇒ y = 0

x = – 2 ⇒ y = – (x + 1) ⇒ y = 1

x = – 3 ⇒ y = – (x + 1) ⇒ y = 2

x 0 1 2 3 1 2 3
y 1 2 3 4 0 1 2


The graph of y = |x + 1| shifts the graph y = |x| to the left by 1 unit.

The graph of y = f( x + c), c > 0 causes the graph y = f(x) a shift to the left by e units.

(b) Consider y = |x + 1| – 1

y = `{{:((x + 1) - 1,  "if"  x + 1 ≥ 0),(-(x + 1) - 1,  "if"  x + 1 < 0):}`

y  = `{{:(x,  "if"  x ≥ - 1),(- 2 - 2,  "if"  x < - 1):}`

x = 0 ⇒ y = x ⇒ y = 0

x = 1 ⇒ y = x ⇒ y = 1

x = 2 ⇒ y = x ⇒ y = 2

x = 3 ⇒ y = x ⇒ y = 3

x = – 1 ⇒ y = x ⇒ y = – 1

x = – 2 ⇒ y = – x – 2 ⇒ y = 0

x = – 3 ⇒ y = – x – 2 ⇒ y = 1

x = – 4 ⇒ y = – x – 5 ⇒ y = – 1

x 0 1 2 3 – 1 – 2 – 3 – 4
y 0 1 2 3 – 1 0 1 – 1


The Graph of y = |x + 1| – 1 shift the graph y = |x| to the left by 1 unit and causes a shift downward by 1 unit.

The graph of y = f(x + c), c > 0 causes the graph y = f(x) a shift to the left by c units.

The graph of y = f(x) – d, d > 0 causes the graph y = f(x) a shift to the downward by d units.

shaalaa.com
Graphing Functions Using Transformations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Sets, Relations and Functions - Exercise 1.4 [पृष्ठ ४४]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 1 Sets, Relations and Functions
Exercise 1.4 | Q 7. (ii) | पृष्ठ ४४
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×