Advertisements
Advertisements
Question
From the curve y = |x|, draw y = |x + 1| − 1
Solution
y = |x|
y = `{{:(x, "if" x ≥ 0),(- x, "if" x < 0):}`
x | 0 | 1 | 2 | 3 | − 1 | − 2 | − 3 |
y | 0 | 1 | 2 | 3 | 1 | 2 | 3 |
(a) Consider y = |x + 1|
y = `{{:((x + 1), "if" x + 1 ≥ 0),(-(x + 1), "if" x + 1 < 0):}`
y = `{{:(x + 1, "if" x ≥ - 1),(-(x + 1), "if" x < - 1):}`
x = 0 ⇒ y = x + 1 ⇒ y = 1
x = 1 ⇒ y = x + 1 ⇒ y = 2
x = 2 ⇒ y = x + 1 ⇒ y = 3
x = 3 ⇒ y = x + 1 ⇒ y = 4
x = – 1 ⇒ y = x + 1 ⇒ y = 0
x = – 2 ⇒ y = – (x + 1) ⇒ y = 1
x = – 3 ⇒ y = – (x + 1) ⇒ y = 2
x | 0 | 1 | 2 | 3 | 1 | 2 | 3 |
y | 1 | 2 | 3 | 4 | 0 | 1 | 2 |
The graph of y = |x + 1| shifts the graph y = |x| to the left by 1 unit.
The graph of y = f( x + c), c > 0 causes the graph y = f(x) a shift to the left by e units.
(b) Consider y = |x + 1| – 1
y = `{{:((x + 1) - 1, "if" x + 1 ≥ 0),(-(x + 1) - 1, "if" x + 1 < 0):}`
y = `{{:(x, "if" x ≥ - 1),(- 2 - 2, "if" x < - 1):}`
x = 0 ⇒ y = x ⇒ y = 0
x = 1 ⇒ y = x ⇒ y = 1
x = 2 ⇒ y = x ⇒ y = 2
x = 3 ⇒ y = x ⇒ y = 3
x = – 1 ⇒ y = x ⇒ y = – 1
x = – 2 ⇒ y = – x – 2 ⇒ y = 0
x = – 3 ⇒ y = – x – 2 ⇒ y = 1
x = – 4 ⇒ y = – x – 5 ⇒ y = – 1
x | 0 | 1 | 2 | 3 | – 1 | – 2 | – 3 | – 4 |
y | 0 | 1 | 2 | 3 | – 1 | 0 | 1 | – 1 |
The Graph of y = |x + 1| – 1 shift the graph y = |x| to the left by 1 unit and causes a shift downward by 1 unit.
The graph of y = f(x + c), c > 0 causes the graph y = f(x) a shift to the left by c units.
The graph of y = f(x) – d, d > 0 causes the graph y = f(x) a shift to the downward by d units.
APPEARS IN
RELATED QUESTIONS
For the curve y = x3 given in Figure 1.67, draw
y = x3 + 1
For the curve y = x3 given in Figure 1.67, draw
y = x3 − 1
For the curve y = x3 given in Figure 1.67, draw
y = (x + 1)3 with the same scale
For the curve y = `x^((1/3))` given in Figure 1.68, draw
y = `- x^((1/3))`
For the curve y = `x^((1/3))` given in Figure 1.68, draw
y = `x^((1/3)) + 1`
For the curve y = `x^((1/3))` given in Figure 1.68, draw
y = `x^((1/3)) - 1`
From the curve y = sin x, graph the function.
y = sin(− x)
From the curve y = sin x, graph the function
y = `sin(pi/2 + x)` which is cos x
From the curve y = sin x, graph the function
y = `sin (pi/2 - x)` which is also cos x (refer trigonometry)
From the curve y = x, draw y = − x
From the curve y = x, draw y = `1/2 x + 1`
From the curve y = x, draw 2x + y + 3 = 0
From the curve y = |x|, draw y = |x + 2| − 3
From the curve y = sin x, draw y = sin |x| (Hint: sin(−x) = − sin x)