English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

From the curve y = |x|, draw y = |x − 1| + 1 - Mathematics

Advertisements
Advertisements

Question

From the curve y = |x|, draw y = |x − 1| + 1

Diagram
Graph

Solution

y = |x|

y = `{{:(x,  "if"  x ≥ 0),(- x,  "if"  x < 0):}`

x 0 1 2 3 − 1 − 2 − 3
y 0 1 2 3 1 2 3

(a) Consider y = |x – 1|

y = `{{:((x - 1),  "if"  x - 1 ≥ 0),(-(x - 1),  "if"  x - 1 < 0):}`

y = `{{:(x - 1,  "if"  x  ≥ 1),(-x + 1,  "if"  x < 1):}`

x = 0 ⇒ y = – x + 1 ⇒ y = 1

x = 1 ⇒ y = x – 1 ⇒ y = 0

x = 2 ⇒ y = x – 1 ⇒ y = 1

x = 3 ⇒ y = x – 1 ⇒ y = 2

x = – 1 ⇒ y = – x + 1 ⇒ y = 2

x = – 2 ⇒ y = – x + 1 ⇒ y = 3

x 0 1 2 3 − 1 − 2
y 1 0 1 2 2 3

The graph of y = |x – 1| causes the graph y = |x| a shift to the right by 1 unit.

The graph of y = f(x – c), c > 0 causes the graph y = f(x) a shift to the right by c units.

(b) Consider y = |x – 1| + 1

y = `{{:((x - 1) + 1,  "if"  x - 1 ≥ 0),(-(x - 1) + 1,  "if"  x - 1 < 0):}`

y = `{{:(x,  "if"  x ≥ 1),(- x + 2,  "if"  x < 1):}`

x = 0 ⇒ y = – x + 2 ⇒ y = 2

x = 1 ⇒ y = x ⇒ y = 1

x = 2 ⇒ y = x ⇒ y = 2

x = 3 ⇒ y = x ⇒ y = 3

x = – 1 ⇒ y = – x + 2 ⇒ y = 3

x = – 2 ⇒ y = – x + 2 ⇒ y = 4

x 0 1 2 3 − 1 − 2
y 2 1 2 3 3 4

The graph of y = |x – 1| causes the graph y = |x| a shift to the right by 1 unit.

The graph of y = f(x – c), c > 0 causes the graph y = f(x) a shift to the right by c units.

The graph of y = f(x) + d, d > 0 causes the graph y = f(x) a shift to the upward by d units.

shaalaa.com
Graphing Functions Using Transformations
  Is there an error in this question or solution?
Chapter 1: Sets, Relations and Functions - Exercise 1.4 [Page 44]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 1 Sets, Relations and Functions
Exercise 1.4 | Q 7. (i) | Page 44
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×