हिंदी

Given a triangle ABC in which A = (4, −4), B = (0, 5) and C = (5, 10). A point P lies on BC such that BP : PC = 3 : 2. Find the length of line segment AP. - Mathematics

Advertisements
Advertisements

प्रश्न

Given a triangle ABC in which A = (4, −4), B = (0, 5) and C = (5, 10). A point P lies on BC such that BP : PC = 3 : 2. Find the length of line segment AP.

योग

उत्तर

Given, BP : PC = 3 : 2

Using section formula, the co-ordinates of point P are

`((3 xx 5 + 2 xx 0)/(3 + 2), (3 xx 10 + 2 xx 5)/(3 + 2))`

= `(15/5, 40/5)`

= (3, 8)

Using distance formula, we have:

`AP = sqrt((3 - 4)^2 + (8 + 4)^2)`

= `sqrt(1 + 144)`

= `sqrt(145)`

= 12.04

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Section and Mid-Point Formula - Exercise 13 (C) [पृष्ठ १८२]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
अध्याय 13 Section and Mid-Point Formula
Exercise 13 (C) | Q 1 | पृष्ठ १८२

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×