हिंदी

How is the Field Directed If (I) the Sheet is Positively Charged, (Ii) Negatively Charged? - Physics

Advertisements
Advertisements

प्रश्न

How is the field directed if (i) the sheet is positively charged, (ii) negatively charged?

उत्तर

(1) `E =sigma/(2in_0)`

Direction of field will be away from the sheet if sheet is positively charged.

`(2) E= -sigma/(2in_0)`

Direction of field will be towards the sheet if sheet is negatively charged.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2011-2012 (March) Delhi Set 1

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

 Use Gauss's law to find the electric field due to a uniformly charged infinite plane sheet. What is the direction of field for positive and negative charge densities?

 


Find the electric field intensity due to a uniformly charged spherical shell at a point (i) outside the shell. Plot the graph of electric field with distance from the centre of the shell.


Find the electric field intensity due to a uniformly charged spherical shell at a point (ii) inside the shell. Plot the graph of electric field with distance from the centre of the shell.


Two large, thin metal plates are parallel and close to each other. On their inner faces, the plates have surface charge densities of opposite signs and of magnitude 17.0 × 10−22 C/m2. What is E:

  1. in the outer region of the first plate,
  2. in the outer region of the second plate, and
  3. between the plates?

A small conducting sphere of radius 'r' carrying a charge +q is surrounded by a large concentric conducting shell of radius Ron which a charge +Q is placed. Using Gauss's law, derive the expressions for the electric field at a point 'x'
(i) between the sphere and the shell (r < x < R),
(ii) outside the spherical shell.


Using Gauss’ law deduce the expression for the electric field due to a uniformly charged spherical conducting shell of radius R at a point

(i) outside and (ii) inside the shell.

Plot a graph showing variation of electric field as a function of r > R and r < R.

(r being the distance from the centre of the shell)


A rubber balloon is given a charge Q distributed uniformly over its surface. Is the field inside the balloon zero everywhere if the balloon does not have a spherical surface?


A large non-conducting sheet M is given a uniform charge density. Two uncharged small metal rods A and B are placed near the sheet as shown in the following  figure.

(a) M attracts A.
(b) M attracts B.
(c) A attracts B.
(d) B attracts A.


Find the flux of the electric field through a spherical surface of radius R due to a charge of 10−7 C at the centre and another equal charge at a point 2R away from the centre in the following figure.


The electric field inside a spherical shell of uniform surface charge density is ______.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×