हिंदी

How is the Magnetic Field Inside a Given Solenoid Made Strong? - Physics

Advertisements
Advertisements

प्रश्न

How is the magnetic field inside a given solenoid made strong?

उत्तर

The magnetic field lines inside a solenoid can be made strong by

(i) Inserting a ferromagnetic core

(ii) Increasing the number of turns of the solenoid

(iii) Increasing the current passing through the solenoid.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2010-2011 (March) All India Set 3

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

An observer to the left of a solenoid of N turns each of cross section area 'A' observes that a steady current I in it flows in the clockwise direction. Depict the magnetic field lines due to the solenoid specifying its polarity and show that it acts as a bar magnet of magnetic moment m = NIA.

 


Two long coaxial insulated solenoids, S1 and S2 of equal lengths are wound one over the other as shown in the figure. A steady current "I" flow thought the inner solenoid S1 to the other end B, which is connected to the outer solenoid S2 through which the same current "I" flows in the opposite direction so as to come out at end A. If n1 and n2 are the number of turns per unit length, find the magnitude and direction of the net magnetic field at a point (i) inside on the axis and (ii) outside the combined system


Define the term self-inductance of a solenoid.


Obtain the expression for mutual inductance of a pair of long coaxial solenoids each of length l and radii r1 and r2 (r2 >> r1). Total number of turns in the two solenoids are N1 and N2, respectively.


Define self-inductance of a coil.


Obtain the expression for the magnetic energy stored in an inductor of self-inductance L to build up a current I through it.


A wire AB is carrying a steady current of 12 A and is lying on the table. Another wire CD carrying 5 A is held directly above AB at a height of 1 mm. Find the mass per unit length of the wire CD so that it remains suspended at its position when left free. Give the direction of the current flowing in CD with respect to that in AB. [Take the value of g = 10 ms−2]


A wire AB is carrying a steady current of 10 A and is lying on the table. Another wire CD carrying 6 A is held directly above AB at a height of 2 mm. Find the mass per unit length of the wire CD so that it remains suspended at its position when left free. Give the direction of the current flowing in CD with respect to that in AB. [Take the value of g = 10 ms−2]


A wire AB is carrying a steady current of 6 A and is lying on the table. Another wire CD carrying 4 A is held directly above AB at a height of 1 mm. Find the mass per unit length of the wire CD so that it remains suspended at its position when left free. Give the direction of the current flowing in CD with respect to that in AB. [Take the value of g = 10 ms−2]


A tightly-wound, long solenoid carries a current of 2.00 A. An electron is found to execute a uniform circular motion inside the solenoid with a frequency of 1.00 × 108 rev s−1. Find the number of turns per metre in the solenoid. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×