English

How is the Magnetic Field Inside a Given Solenoid Made Strong? - Physics

Advertisements
Advertisements

Question

How is the magnetic field inside a given solenoid made strong?

Solution

The magnetic field lines inside a solenoid can be made strong by

(i) Inserting a ferromagnetic core

(ii) Increasing the number of turns of the solenoid

(iii) Increasing the current passing through the solenoid.

shaalaa.com
  Is there an error in this question or solution?
2010-2011 (March) All India Set 3

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Obtain an expression for the energy stored in a solenoid of self-inductance ‘L’ when the current through it grows from zero to ‘I’.


Use this law to obtain the expression for the magnetic field inside an air cored toroid of average radius 'r', having 'n' turns per unit length and carrying a steady current I.


Derive an expression for the mutual inductance of two long co-axial solenoids of same length wound one over the other,


A closely wound solenoid 80 cm long has 5 layers of windings of 400 turns each. The diameter of the solenoid is 1.8 cm. If the current carried is 8.0 A, estimate the magnitude of B inside the solenoid near its centre.


A magnetic field of 100 G (1 G = 10−4 T) is required which is uniform in a region of linear dimension about 10 cm and area of cross-section about 10−3 m2. The maximum current-carrying capacity of a given coil of wire is 15 A and the number of turns per unit length that can be wound round a core is at most 1000 turns m−1. Suggest some appropriate design particulars of a solenoid for the required purpose. Assume the core is not ferromagnetic.


Define self-inductance of a coil.


A wire AB is carrying a steady current of 6 A and is lying on the table. Another wire CD carrying 4 A is held directly above AB at a height of 1 mm. Find the mass per unit length of the wire CD so that it remains suspended at its position when left free. Give the direction of the current flowing in CD with respect to that in AB. [Take the value of g = 10 ms−2]


In what respect is a toroid different from a solenoid? 


The magnetic field inside a tightly wound, long solenoid is B = µ0 ni. It suggests that the field does not depend on the total length of the solenoid, and hence if we add more loops at the ends of a solenoid the field should not increase. Explain qualitatively why the extra-added loops do not have a considerable effect on the field inside the solenoid.  


A tightly-wound, long solenoid is kept with its axis parallel to a large metal sheet carrying a surface current. The surface current through a width dl of the sheet is Kdl and the number of turns per unit length of the solenoid is n. The magnetic field near the centre of the solenoid is found to be zero. (a) Find the current in the solenoid. (b) If the solenoid is rotated to make its axis perpendicular to the metal sheet, what would be the magnitude of the magnetic field near its centre? 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×