English

A Wire Ab is Carrying a Steady Current of 6 a and is Lying on the Table. Another Wire Cd Carrying 4 a is Held Directly Above Ab at a Height of 1 Mm. - Physics

Advertisements
Advertisements

Question

A wire AB is carrying a steady current of 6 A and is lying on the table. Another wire CD carrying 4 A is held directly above AB at a height of 1 mm. Find the mass per unit length of the wire CD so that it remains suspended at its position when left free. Give the direction of the current flowing in CD with respect to that in AB. [Take the value of g = 10 ms−2]

Solution

Force per unit length between the current carrying wires is given as:

`F= (μ_0)/(4pi) (2I_1I_2)/r`

Let m be the mass per unit length of wire CD. As the force balances the weight of the wire

`therefore (μ_0)/(4pi) (2I_1I_2)/r =`mg, here, m is mass per unit length.

`=> 10^-7 xx (2 xx 6 xx 4)/(1 xx 10^-3) = m xx 10 => m = 10^-7 xx (2xx 6 xx 4 )/(1xx 10^-3) xx 1 /10 = 4.8 xx 10^-3 kg  m^-1`

shaalaa.com
  Is there an error in this question or solution?
2012-2013 (March) All India Set 3

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Obtain an expression for the energy stored in a solenoid of self-inductance ‘L’ when the current through it grows from zero to ‘I’.


Use this law to obtain the expression for the magnetic field inside an air cored toroid of average radius 'r', having 'n' turns per unit length and carrying a steady current I.


Two long coaxial insulated solenoids, S1 and S2 of equal lengths are wound one over the other as shown in the figure. A steady current "I" flow thought the inner solenoid S1 to the other end B, which is connected to the outer solenoid S2 through which the same current "I" flows in the opposite direction so as to come out at end A. If n1 and n2 are the number of turns per unit length, find the magnitude and direction of the net magnetic field at a point (i) inside on the axis and (ii) outside the combined system


Define the term self-inductance of a solenoid.


A magnetic field of 100 G (1 G = 10−4 T) is required which is uniform in a region of linear dimension about 10 cm and area of cross-section about 10−3 m2. The maximum current-carrying capacity of a given coil of wire is 15 A and the number of turns per unit length that can be wound round a core is at most 1000 turns m−1. Suggest some appropriate design particulars of a solenoid for the required purpose. Assume the core is not ferromagnetic.


A wire AB is carrying a steady current of 12 A and is lying on the table. Another wire CD carrying 5 A is held directly above AB at a height of 1 mm. Find the mass per unit length of the wire CD so that it remains suspended at its position when left free. Give the direction of the current flowing in CD with respect to that in AB. [Take the value of g = 10 ms−2]


A long solenoid is fabricated by closely winding a wire of radius 0.5 mm over a cylindrical nonmagnetic frame so that the successive turns nearly touch each other. What would be the magnetic field B at the centre of the solenoid if it carries a current of 5 A? 


A copper wire having resistance 0.01 ohm in each metre is used to wind a 400-turn solenoid of radius 1.0 cm and length 20 cm. Find the emf of a battery which when connected across the solenoid will cause a magnetic field of 1.0 × 10−2 T near the centre of the solenoid.


A current of 1.0 A is established in a tightly wound solenoid of radius 2 cm having 1000 turns/metre. Find the magnetic energy stored in each metre of the solenoid.


Magnetic field inside a solenoid is ______.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×