हिंदी

Identify the regression equations of x on y and y on x from the following equations, 2x + 3y = 6 and 5x + 7y − 12 = 0 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Identify the regression equations of x on y and y on x from the following equations, 2x + 3y = 6 and 5x + 7y − 12 = 0

योग

उत्तर

Given two equations are
2x + 3y = 6 and 5x + 7y – 12 = 0

Let 2x + 3y = 6 be the regression equation of Y on X.

∴ The equation becomes 2X + 3Y = 6

i.e., 3Y = 6 - 2X

i.e., Y = `(-2)/3"X" + 6/3`

Comparing it with Y = bYX X + a, we get

`"b"_"YX" = - 2/3`

Now, other equation 5x + 7y – 12 = 0 be the regression equation of X on Y.

∴ The equation becomes 5X + 7Y – 12 = 0

i.e., 5X = - 7Y + 12

∴ X = `- 7/5 "Y" + 12/5`

Comparing it with X = bXY Y + a', we get

`"b"_"XY" = - 7/5`

Now, `"b"_"XY" * "b"_"YX" = - 7/5 xx (- 2/3) = 14/15 < 1`

∴ Our assumption of regression equation is true.

∴ 2x + 3y = 6 is the regression equation of Y on X, and 5x + 7y – 12 = 0 is the regression equation of X on Y.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Linear Regression - Miscellaneous Exercise 3 [पृष्ठ ५४]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Linear Regression
Miscellaneous Exercise 3 | Q 4.05 | पृष्ठ ५४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

The equations given of the two regression lines are 2x + 3y - 6 = 0 and 5x + 7y - 12 = 0.

Find:

(a) Correlation coefficient

(b) `sigma_x/sigma_y`


Given that the observations are: (9, -4), (10, -3), (11, -1), (12, 0), (13, 1), (14, 3), (15, 5), (16, 8). Find the two lines of regression and estimate the value of y when x = 13·5.


Identify the regression equations of X on Y and Y on X from the following equations :
2x + 3y = 6 and 5x + 7y – 12 = 0 


Find the equation of the regression line of y on x, if the observations (x, y) are as follows : 
(1,4),(2,8),(3,2),(4,12),(5,10),(6,14),(7,16),(8,6),(9,18)
Also, find the estimated value of y when x = 14.


Find the feasible solution for the following system of linear inequations:
0 ≤ x ≤ 3, 0 ≤ y ≤ 3, x + y ≤ 5, 2x + y ≥ 4


Information on v:ehicles [in thousands) passing through seven different highways during a day (X) and number of accidents reported (Y) is given as follows :   

`Sigmax_i` = 105, `Sigmay_i` = 409, n = 7, `Sigmax_i^2` = 1681, `Sigmay_i^2` = 39350 `Sigmax_iy_i` = 8075

  Obtain the linear regression of Y on X.


The two lines of regressions are x + 2y – 5 = 0 and 2x + 3y – 8 = 0 and the variance of x is 12. Find the variance of y and the coefficient of correlation.


Calculate the Spearman’s rank correlation coefficient for the following data and interpret the result: 

X 35 54 80 95 73 73 35 91 83 81
Y 40 60 75 90 70 75 38 95 75 70

From the data of 20 pairs of observations on X and Y, following results are obtained.

`barx` = 199, `bary` = 94,

`sum(x_i - barx)^2` = 1200, `sum(y_i - bary)^2` = 300,

`sum(x_i - bar x)(y_i - bar y)` = –250

Find:

  1. The line of regression of Y on X.
  2. The line of regression of X on Y.
  3. Correlation coefficient between X and Y.

Given the following data, obtain a linear regression estimate of X for Y = 10, `bar x = 7.6, bar y = 14.8, sigma_x = 3.2, sigma_y = 16` and r = 0.7


If for bivariate data `bar x = 10, bar y = 12,` v(x) = 9, σy = 4 and r = 0.6 estimate y, when x = 5.


Find the equation of the line of regression of Y on X for the following data:

n = 8, `sum(x_i - barx).(y_i - bary) = 120, barx = 20, bary = 36, sigma_x = 2, sigma_y = 3`


Choose the correct alternative:

If the lines of regression of Y on X is y = `x/4` and X on Y is x = `y/9 + 1` then the value of r is


Choose the correct alternative:

y = 5 – 2.8x and x = 3 – 0.5 y be the regression lines, then the value of byx is 


State whether the following statement is True or False:

The equations of two regression lines are 10x – 4y = 80 and 10y – 9x = 40. Then bxy = 0.9


State whether the following statement is True or False:

y = 5 + 2.8x and x = 3 + 0.5y be the regression lines of y on x and x on y respectively, then byx = – 0.5


State whether the following statement is True or False:

If equation of regression lines are 3x + 2y – 26 = 0 and 6x + y – 31= 0, then mean of X is 7


Among the given regression lines 6x + y – 31 = 0 and 3x + 2y – 26 = 0, the regression line of x on y is ______


If the regression equations are 8x – 10y + 66 = 0 and 40x – 18y = 214, the mean value of y is ______


The equations of the two lines of regression are 2x + 3y − 6 = 0 and 5x + 7y − 12 = 0. Identify the regression lines


The equations of the two lines of regression are 6x + y − 31 = 0 and 3x + 2y – 26 = 0. Identify the regression lines


Two samples from bivariate populations have 15 observations each. The sample means of X and Y are 25 and 18 respectively. The corresponding sum of squares of deviations from means are 136 and 148 respectively. The sum of product of deviations from respective means is 122. Obtain the regression equation of x on y


If n = 5, Σx = Σy = 20, Σx2 = Σy2 = 90, Σxy = 76 Find the regression equation of x on y


The regression equation of x on y is 40x – 18y = 214  ......(i)

The regression equation of y on x is 8x – 10y + 66 = 0  ......(ii)

Solving equations (i) and (ii),

`barx = square`

`bary = square`

∴ byx = `square/square`

∴ bxy = `square/square`

∴ r = `square`

Given variance of x = 9

∴ byx = `square/square`

∴ `sigma_y = square`


If `bar"X"` = 40, `bar"Y"` = 6, σx = 10, σy = 1.5 and r = 0.9 for the two sets of data X and Y, then the regression line of X on Y will be:


For certain bivariate data on 5 pairs of observations given:

∑x = 20, ∑y = 20, ∑x2 = 90, ∑y2 = 90, ∑xy = 76 then bxy = ______.


The management of a large furniture store would like to determine sales (in thousands of ₹) (X) on a given day on the basis of number of people (Y) that visited the store on that day. The necessary records were kept, and a random sample of ten days was selected for the study. The summary results were as follows:

`sumx_i = 370 , sumy_i = 580, sumx_i^2 = 17200 , sumy_i^2 = 41640, sumx_iy_i = 11500, n = 10`


Out of the two regression lines x + 2y – 5 = 0 and 2x + 3y = 8, find the line of regression of y on x.


For a bivariate data `barx = 10`, `bary = 12`, V(X) = 9, σy = 4 and r = 0.6
Estimate y when x = 5

Solution: Line of regression of Y on X is

`"Y" - bary = square ("X" - barx)`

∴ Y − 12 = `r.(σ_y)/(σ_x)("X" - 10)`

∴ Y − 12 = `0.6 xx 4/square ("X" - 10)`

∴ When x = 5

Y − 12 = `square(5 - 10)`

∴ Y − 12 = −4

∴ Y = `square`


XYZ company plans to advertise some vacancies. The Manager is asked to suggest the monthly salary for these vacancies based on the years of experience. To do so, the Manager studies the years of service and the monthly salary drawn by the existing employees in the company.

Following is the data that the Manager refers to:

Years of service (X) 11 7 9 5 8 6 10
Monthly salary (in ₹ 1000)(Y) 10 8 6 5 9 7 11
  1. Find the regression equation of monthly salary on the years of service.
  2. If a person with 13 years of experience applies for a job in this company, what monthly salary will be suggested by the Manager?

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×