Advertisements
Advertisements
प्रश्न
State whether the following statement is True or False:
If equation of regression lines are 3x + 2y – 26 = 0 and 6x + y – 31= 0, then mean of X is 7
विकल्प
True
False
उत्तर
False
APPEARS IN
संबंधित प्रश्न
The equations given of the two regression lines are 2x + 3y - 6 = 0 and 5x + 7y - 12 = 0.
Find:
(a) Correlation coefficient
(b) `sigma_x/sigma_y`
Identify the regression equations of X on Y and Y on X from the following equations :
2x + 3y = 6 and 5x + 7y – 12 = 0
Find the equation of the regression line of y on x, if the observations (x, y) are as follows :
(1,4),(2,8),(3,2),(4,12),(5,10),(6,14),(7,16),(8,6),(9,18)
Also, find the estimated value of y when x = 14.
Find the feasible solution for the following system of linear inequations:
0 ≤ x ≤ 3, 0 ≤ y ≤ 3, x + y ≤ 5, 2x + y ≥ 4
Find graphical solution for following system of linear inequations :
3x + 2y ≤ 180; x+ 2y ≤ 120, x ≥ 0, y ≥ 0
Hence find co-ordinates of corner points of the common region.
Compute the product moment coefficient of correlation for the following data:
n = 100, `bar x` = 62, `bary` = 53, `sigma_x` = 10, `sigma_y` = 12
`Sigma (x_i - bar x) (y_i - bary) = 8000`
Information on v:ehicles [in thousands) passing through seven different highways during a day (X) and number of accidents reported (Y) is given as follows :
`Sigmax_i` = 105, `Sigmay_i` = 409, n = 7, `Sigmax_i^2` = 1681, `Sigmay_i^2` = 39350 `Sigmax_iy_i` = 8075
Obtain the linear regression of Y on X.
bYX is ______.
The data obtained on X, the length of time in weeks that a promotional project has been in progress at a small business, and Y, the percentage increase in weekly sales over the period just prior to the beginning of the campaign.
X | 1 | 2 | 3 | 4 | 1 | 3 | 1 | 2 | 3 | 4 | 2 | 4 |
Y | 10 | 10 | 18 | 20 | 11 | 15 | 12 | 15 | 17 | 19 | 13 | 16 |
Find the equation of the regression line to predict the percentage increase in sales if the campaign has been in progress for 1.5 weeks.
Identify the regression equations of x on y and y on x from the following equations, 2x + 3y = 6 and 5x + 7y − 12 = 0
If for a bivariate data byx = – 1.2 and bxy = – 0.3 then find r.
From the two regression equations y = 4x – 5 and 3x = 2y + 5, find `bar x and bar y`.
Find the equation of the line of regression of Y on X for the following data:
n = 8, `sum(x_i - barx).(y_i - bary) = 120, barx = 20, bary = 36, sigma_x = 2, sigma_y = 3`
Choose the correct alternative:
The slope of the line of regression of y on x is called the ______
Choose the correct alternative:
If the lines of regression of Y on X is y = `x/4` and X on Y is x = `y/9 + 1` then the value of r is
Choose the correct alternative:
u = `(x - 20)/5` and v = `(y - 30)/4`, then bxy =
Choose the correct alternative:
y = 5 – 2.8x and x = 3 – 0.5 y be the regression lines, then the value of byx is
State whether the following statement is True or False:
y = 5 + 2.8x and x = 3 + 0.5y be the regression lines of y on x and x on y respectively, then byx = – 0.5
Among the given regression lines 6x + y – 31 = 0 and 3x + 2y – 26 = 0, the regression line of x on y is ______
If the regression equations are 8x – 10y + 66 = 0 and 40x – 18y = 214, the mean value of y is ______
The age in years of 7 young couples is given below. Calculate husband’s age when wife’s age is 38 years.
Husband (x) | 21 | 25 | 26 | 24 | 22 | 30 | 20 |
Wife (y) | 19 | 20 | 24 | 20 | 22 | 24 | 18 |
The equations of the two lines of regression are 6x + y − 31 = 0 and 3x + 2y – 26 = 0. Identify the regression lines
The equations of the two lines of regression are 6x + y − 31 = 0 and 3x + 2y – 26 = 0. Calculate the mean values of x and y
If n = 5, Σx = Σy = 20, Σx2 = Σy2 = 90, Σxy = 76 Find the regression equation of x on y
If n = 6, Σx = 36, Σy = 60, Σxy = –67, Σx2 = 50, Σy2 =106, Estimate y when x is 13
The regression equation of x on y is 40x – 18y = 214 ......(i)
The regression equation of y on x is 8x – 10y + 66 = 0 ......(ii)
Solving equations (i) and (ii),
`barx = square`
`bary = square`
∴ byx = `square/square`
∴ bxy = `square/square`
∴ r = `square`
Given variance of x = 9
∴ byx = `square/square`
∴ `sigma_y = square`
If `(x - 1)/l = (y - 2)/m = (z + 1)/n` is the equation of the line through (1, 2, -1) and (-1, 0, 1), then (l, m, n) is ______
If `bar"X"` = 40, `bar"Y"` = 6, σx = 10, σy = 1.5 and r = 0.9 for the two sets of data X and Y, then the regression line of X on Y will be:
The management of a large furniture store would like to determine sales (in thousands of ₹) (X) on a given day on the basis of number of people (Y) that visited the store on that day. The necessary records were kept, and a random sample of ten days was selected for the study. The summary results were as follows:
`sumx_i = 370 , sumy_i = 580, sumx_i^2 = 17200 , sumy_i^2 = 41640, sumx_iy_i = 11500, n = 10`
Complete the following activity to find, the equation of line of regression of Y on X and X on Y for the following data:
Given:`n=8,sum(x_i-barx)^2=36,sum(y_i-bary)^2=40,sum(x_i-barx)(y_i-bary)=24`
Solution:
Given:`n=8,sum(x_i-barx)=36,sum(y_i-bary)^2=40,sum(x_i-barx)(y_i-bary)=24`
∴ `b_(yx)=(sum(x_i-barx)(y_i-bary))/(sum(x_i-barx)^2)=square`
∴ `b_(xy)=(sum(x_i-barx)(y_i-bary))/(sum(y_i-bary)^2)=square`
∴ regression equation of Y on :
`y-bary=b_(yx)(x-barx)` `y-bary=square(x-barx)`
`x-barx=b_(xy)(y-bary)` `x-barx=square(y-bary)`
Out of the two regression lines x + 2y – 5 = 0 and 2x + 3y = 8, find the line of regression of y on x.
For a bivariate data `barx = 10`, `bary = 12`, V(X) = 9, σy = 4 and r = 0.6
Estimate y when x = 5
Solution: Line of regression of Y on X is
`"Y" - bary = square ("X" - barx)`
∴ Y − 12 = `r.(σ_y)/(σ_x)("X" - 10)`
∴ Y − 12 = `0.6 xx 4/square ("X" - 10)`
∴ When x = 5
Y − 12 = `square(5 - 10)`
∴ Y − 12 = −4
∴ Y = `square`