मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

State whether the following statement is True or False: If equation of regression lines are 3x + 2y – 26 = 0 and 6x + y – 31= 0, then mean of X is 7 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

State whether the following statement is True or False:

If equation of regression lines are 3x + 2y – 26 = 0 and 6x + y – 31= 0, then mean of X is 7

पर्याय

  • True

  • False

MCQ
चूक किंवा बरोबर

उत्तर

False

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2.3: Linear Regression - Q.2

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

The equations given of the two regression lines are 2x + 3y - 6 = 0 and 5x + 7y - 12 = 0.

Find:

(a) Correlation coefficient

(b) `sigma_x/sigma_y`


Given that the observations are: (9, -4), (10, -3), (11, -1), (12, 0), (13, 1), (14, 3), (15, 5), (16, 8). Find the two lines of regression and estimate the value of y when x = 13·5.


Identify the regression equations of X on Y and Y on X from the following equations :
2x + 3y = 6 and 5x + 7y – 12 = 0 


Information on v:ehicles [in thousands) passing through seven different highways during a day (X) and number of accidents reported (Y) is given as follows :   

`Sigmax_i` = 105, `Sigmay_i` = 409, n = 7, `Sigmax_i^2` = 1681, `Sigmay_i^2` = 39350 `Sigmax_iy_i` = 8075

  Obtain the linear regression of Y on X.


The two lines of regressions are x + 2y – 5 = 0 and 2x + 3y – 8 = 0 and the variance of x is 12. Find the variance of y and the coefficient of correlation.


Calculate the Spearman’s rank correlation coefficient for the following data and interpret the result: 

X 35 54 80 95 73 73 35 91 83 81
Y 40 60 75 90 70 75 38 95 75 70

For the following bivariate data obtain the equations of two regression lines:

X 1 2 3 4 5
Y 5 7 9 11 13

From the data of 20 pairs of observations on X and Y, following results are obtained.

`barx` = 199, `bary` = 94,

`sum(x_i - barx)^2` = 1200, `sum(y_i - bary)^2` = 300,

`sum(x_i - bar x)(y_i - bar y)` = –250

Find:

  1. The line of regression of Y on X.
  2. The line of regression of X on Y.
  3. Correlation coefficient between X and Y.

If for a bivariate data byx = – 1.2 and bxy = – 0.3 then find r.


From the two regression equations y = 4x – 5 and 3x = 2y + 5, find `bar x and bar y`.


The equations of the two lines of regression are 3x + 2y − 26 = 0 and 6x + y − 31 = 0 Find

  1. Means of X and Y
  2. Correlation coefficient between X and Y
  3. Estimate of Y for X = 2
  4. var (X) if var (Y) = 36

Find the equation of the line of regression of Y on X for the following data:

n = 8, `sum(x_i - barx).(y_i - bary) = 120, barx = 20, bary = 36, sigma_x = 2, sigma_y = 3`


Regression equation of X on Y is ______


Regression equation of X on Y is_________


In the regression equation of Y on X, byx represents slope of the line.


Choose the correct alternative:

The slope of the line of regression of y on x is called the ______


Choose the correct alternative:

u = `(x - 20)/5` and v = `(y - 30)/4`, then bxy


State whether the following statement is True or False:

y = 5 + 2.8x and x = 3 + 0.5y be the regression lines of y on x and x on y respectively, then byx = – 0.5


State whether the following statement is True or False:

bxy is the slope of regression line of y on x


Among the given regression lines 6x + y – 31 = 0 and 3x + 2y – 26 = 0, the regression line of x on y is ______


If the regression equations are 8x – 10y + 66 = 0 and 40x – 18y = 214, the mean value of y is ______


The equations of the two lines of regression are 2x + 3y − 6 = 0 and 5x + 7y − 12 = 0. Identify the regression lines


The age in years of 7 young couples is given below. Calculate husband’s age when wife’s age is 38 years.

Husband (x) 21 25 26 24 22 30 20
Wife (y) 19 20 24 20 22 24 18

The equations of the two lines of regression are 6x + y − 31 = 0 and 3x + 2y – 26 = 0. Identify the regression lines


Two samples from bivariate populations have 15 observations each. The sample means of X and Y are 25 and 18 respectively. The corresponding sum of squares of deviations from means are 136 and 148 respectively. The sum of product of deviations from respective means is 122. Obtain the regression equation of x on y


If `(x - 1)/l = (y - 2)/m = (z + 1)/n` is the equation of the line through (1, 2, -1) and (-1, 0, 1), then (l, m, n) is ______ 


For certain bivariate data on 5 pairs of observations given:

∑x = 20, ∑y = 20, ∑x2 = 90, ∑y2 = 90, ∑xy = 76 then bxy = ______.


Complete the following activity to find, the equation of line of regression of Y on X and X on Y for the following data:

Given:`n=8,sum(x_i-barx)^2=36,sum(y_i-bary)^2=40,sum(x_i-barx)(y_i-bary)=24`

Solution:

Given:`n=8,sum(x_i-barx)=36,sum(y_i-bary)^2=40,sum(x_i-barx)(y_i-bary)=24`

∴ `b_(yx)=(sum(x_i-barx)(y_i-bary))/(sum(x_i-barx)^2)=square`

∴ `b_(xy)=(sum(x_i-barx)(y_i-bary))/(sum(y_i-bary)^2)=square`

∴ regression equation of Y on :

`y-bary=b_(yx)(x-barx)` `y-bary=square(x-barx)`

`x-barx=b_(xy)(y-bary)`  `x-barx=square(y-bary)`


Out of the two regression lines x + 2y – 5 = 0 and 2x + 3y = 8, find the line of regression of y on x.


XYZ company plans to advertise some vacancies. The Manager is asked to suggest the monthly salary for these vacancies based on the years of experience. To do so, the Manager studies the years of service and the monthly salary drawn by the existing employees in the company.

Following is the data that the Manager refers to:

Years of service (X) 11 7 9 5 8 6 10
Monthly salary (in ₹ 1000)(Y) 10 8 6 5 9 7 11
  1. Find the regression equation of monthly salary on the years of service.
  2. If a person with 13 years of experience applies for a job in this company, what monthly salary will be suggested by the Manager?

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×