मराठी

The Two Lines of Regressions Are X + 2y – 5 = 0 and 2x + 3y – 8 = 0 and the Variance of X is 12. Find the Variance of Y and the Coefficient of Correlation. - Mathematics

Advertisements
Advertisements

प्रश्न

The two lines of regressions are x + 2y – 5 = 0 and 2x + 3y – 8 = 0 and the variance of x is 12. Find the variance of y and the coefficient of correlation.

बेरीज

उत्तर

Let y = `-1/2"x"+5/2` be the regression line of y on x

and x =`-3/2"y" +8/2` be the regression line of x on y

Now, byx=`-1/2   "b"_("yx")  = -3/2`

`sqrt("b"_("yx")."b"_("xy")) = sqrt(( -1)/2.(-3)/2)`

`=sqrt(3/4)      =(-sqrt3)/2 <1`

r =`(-sqrt3)/2`

Now,   `sigma_"x"=sqrt12=2sqrt3`

We have:    `"b"_("yx") = "r"  sigma_"y"/sigma_"x"`

`-1/2=-sqrt3/2.sigma_"y"/(2sqrt3)`

⇒  `sigma_"y"=2`

∴ Variance of y =4

coefficient of correlation = `(-sqrt3)/2`    ...(same sign as `"b"_("yx") and "b"_("yx"`)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2015-2016 (March)

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

The equations given of the two regression lines are 2x + 3y - 6 = 0 and 5x + 7y - 12 = 0.

Find:

(a) Correlation coefficient

(b) `sigma_x/sigma_y`


Given that the observations are: (9, -4), (10, -3), (11, -1), (12, 0), (13, 1), (14, 3), (15, 5), (16, 8). Find the two lines of regression and estimate the value of y when x = 13·5.


Find graphical solution for following system of linear inequations :
3x + 2y ≤ 180; x+ 2y ≤ 120, x ≥ 0, y ≥ 0
Hence find co-ordinates of corner points of the common region.


Compute the product moment coefficient of correlation for the following data: 
n = 100, `bar x` = 62, `bary` = 53, `sigma_x` = 10, `sigma_y` = 12

`Sigma (x_i - bar x) (y_i - bary) = 8000`


Calculate the Spearman’s rank correlation coefficient for the following data and interpret the result: 

X 35 54 80 95 73 73 35 91 83 81
Y 40 60 75 90 70 75 38 95 75 70

Given the following data, obtain a linear regression estimate of X for Y = 10, `bar x = 7.6, bar y = 14.8, sigma_x = 3.2, sigma_y = 16` and r = 0.7


bYX is ______.


If for bivariate data `bar x = 10, bar y = 12,` v(x) = 9, σy = 4 and r = 0.6 estimate y, when x = 5.


If for a bivariate data byx = – 1.2 and bxy = – 0.3 then find r.


From the two regression equations y = 4x – 5 and 3x = 2y + 5, find `bar x and bar y`.


The equations of the two lines of regression are 3x + 2y − 26 = 0 and 6x + y − 31 = 0 Find

  1. Means of X and Y
  2. Correlation coefficient between X and Y
  3. Estimate of Y for X = 2
  4. var (X) if var (Y) = 36

Find the equation of the line of regression of Y on X for the following data:

n = 8, `sum(x_i - barx).(y_i - bary) = 120, barx = 20, bary = 36, sigma_x = 2, sigma_y = 3`


Regression equation of X on Y is ______


Choose the correct alternative:

If the lines of regression of Y on X is y = `x/4` and X on Y is x = `y/9 + 1` then the value of r is


Choose the correct alternative:

u = `(x - 20)/5` and v = `(y - 30)/4`, then bxy


State whether the following statement is True or False:

y = 5 + 2.8x and x = 3 + 0.5y be the regression lines of y on x and x on y respectively, then byx = – 0.5


State whether the following statement is True or False:

bxy is the slope of regression line of y on x


Among the given regression lines 6x + y – 31 = 0 and 3x + 2y – 26 = 0, the regression line of x on y is ______


If the regression equations are 8x – 10y + 66 = 0 and 40x – 18y = 214, the mean value of y is ______


The equations of the two lines of regression are 2x + 3y − 6 = 0 and 5x + 7y − 12 = 0. Identify the regression lines


If n = 5, Σx = Σy = 20, Σx2 = Σy2 = 90, Σxy = 76 Find the regression equation of x on y


If n = 6, Σx = 36, Σy = 60, Σxy = –67, Σx2 = 50, Σy2 =106, Estimate y when x is 13


If `(x - 1)/l = (y - 2)/m = (z + 1)/n` is the equation of the line through (1, 2, -1) and (-1, 0, 1), then (l, m, n) is ______ 


If `bar"X"` = 40, `bar"Y"` = 6, σx = 10, σy = 1.5 and r = 0.9 for the two sets of data X and Y, then the regression line of X on Y will be:


For certain bivariate data on 5 pairs of observations given:

∑x = 20, ∑y = 20, ∑x2 = 90, ∑y2 = 90, ∑xy = 76 then bxy = ______.


Out of the two regression lines x + 2y – 5 = 0 and 2x + 3y = 8, find the line of regression of y on x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×