Advertisements
Advertisements
प्रश्न
Find the equation of the line of regression of Y on X for the following data:
n = 8, `sum(x_i - barx).(y_i - bary) = 120, barx = 20, bary = 36, sigma_x = 2, sigma_y = 3`
उत्तर
Given, n = 8, `sum(x_i - barx)(y_i - bary)` = 120,
`barx` = 20, `bary` = 36, `sigma_x` = 2, `sigma_y` = 3
∴ Var (X) = `sigma_"X"^2` = 4
Since Var (X) = `(sum (x_i - bar x))/"n"`,
4 = `(sum (x_i - bar x))^2/8`
∴ `sum (x_i - bar x)^2` = 32
Now, `"b"_"YX" = (sum ("x"_"i" - bar"x")("y"_"i" - bar"y"))/(sum("x"_"i" - bar"x")^2) = 120/32` = 3.75
∴ The regression equation of Y on X is
`("Y" - bar y) = "b"_"YX" ("X" - bar x)`
∴ (Y – 36) = 3.75 (X – 20)
∴ Y – 36 = 3.75X – 75
∴ Y = 3.75X – 75 + 36
∴ Y = 3.75 X – 39
APPEARS IN
संबंधित प्रश्न
The equations given of the two regression lines are 2x + 3y - 6 = 0 and 5x + 7y - 12 = 0.
Find:
(a) Correlation coefficient
(b) `sigma_x/sigma_y`
Identify the regression equations of X on Y and Y on X from the following equations :
2x + 3y = 6 and 5x + 7y – 12 = 0
Find the equation of the regression line of y on x, if the observations (x, y) are as follows :
(1,4),(2,8),(3,2),(4,12),(5,10),(6,14),(7,16),(8,6),(9,18)
Also, find the estimated value of y when x = 14.
Find the feasible solution for the following system of linear inequations:
0 ≤ x ≤ 3, 0 ≤ y ≤ 3, x + y ≤ 5, 2x + y ≥ 4
If Σx1 = 56 Σy1 = 56, Σ`x_1^2` = 478,
Σ`y_1^2` = 476, Σx1y1 = 469 and n = 7, Find
(a) the regression equation of y on x.
(b) y, if x = 12.
Find graphical solution for following system of linear inequations :
3x + 2y ≤ 180; x+ 2y ≤ 120, x ≥ 0, y ≥ 0
Hence find co-ordinates of corner points of the common region.
Compute the product moment coefficient of correlation for the following data:
n = 100, `bar x` = 62, `bary` = 53, `sigma_x` = 10, `sigma_y` = 12
`Sigma (x_i - bar x) (y_i - bary) = 8000`
For the given lines of regression, 3x – 2y = 5 and x – 4y = 7, find:
(a) regression coefficients byx and bxy
(b) coefficient of correlation r (x, y)
Calculate the Spearman’s rank correlation coefficient for the following data and interpret the result:
X | 35 | 54 | 80 | 95 | 73 | 73 | 35 | 91 | 83 | 81 |
Y | 40 | 60 | 75 | 90 | 70 | 75 | 38 | 95 | 75 | 70 |
For the following bivariate data obtain the equations of two regression lines:
X | 1 | 2 | 3 | 4 | 5 |
Y | 5 | 7 | 9 | 11 | 13 |
From the data of 20 pairs of observations on X and Y, following results are obtained.
`barx` = 199, `bary` = 94,
`sum(x_i - barx)^2` = 1200, `sum(y_i - bary)^2` = 300,
`sum(x_i - bar x)(y_i - bar y)` = –250
Find:
- The line of regression of Y on X.
- The line of regression of X on Y.
- Correlation coefficient between X and Y.
Given the following data, obtain a linear regression estimate of X for Y = 10, `bar x = 7.6, bar y = 14.8, sigma_x = 3.2, sigma_y = 16` and r = 0.7
The data obtained on X, the length of time in weeks that a promotional project has been in progress at a small business, and Y, the percentage increase in weekly sales over the period just prior to the beginning of the campaign.
X | 1 | 2 | 3 | 4 | 1 | 3 | 1 | 2 | 3 | 4 | 2 | 4 |
Y | 10 | 10 | 18 | 20 | 11 | 15 | 12 | 15 | 17 | 19 | 13 | 16 |
Find the equation of the regression line to predict the percentage increase in sales if the campaign has been in progress for 1.5 weeks.
If for bivariate data `bar x = 10, bar y = 12,` v(x) = 9, σy = 4 and r = 0.6 estimate y, when x = 5.
Identify the regression equations of x on y and y on x from the following equations, 2x + 3y = 6 and 5x + 7y − 12 = 0
If for a bivariate data byx = – 1.2 and bxy = – 0.3 then find r.
From the two regression equations y = 4x – 5 and 3x = 2y + 5, find `bar x and bar y`.
The equations of the two lines of regression are 3x + 2y − 26 = 0 and 6x + y − 31 = 0 Find
- Means of X and Y
- Correlation coefficient between X and Y
- Estimate of Y for X = 2
- var (X) if var (Y) = 36
Regression equation of X on Y is ______
Regression equation of X on Y is_________
In the regression equation of Y on X, byx represents slope of the line.
Choose the correct alternative:
The slope of the line of regression of y on x is called the ______
Choose the correct alternative:
If the lines of regression of Y on X is y = `x/4` and X on Y is x = `y/9 + 1` then the value of r is
Choose the correct alternative:
u = `(x - 20)/5` and v = `(y - 30)/4`, then bxy =
State whether the following statement is True or False:
y = 5 + 2.8x and x = 3 + 0.5y be the regression lines of y on x and x on y respectively, then byx = – 0.5
State whether the following statement is True or False:
bxy is the slope of regression line of y on x
Among the given regression lines 6x + y – 31 = 0 and 3x + 2y – 26 = 0, the regression line of x on y is ______
If the regression equations are 8x – 10y + 66 = 0 and 40x – 18y = 214, the mean value of y is ______
The equations of the two lines of regression are 2x + 3y − 6 = 0 and 5x + 7y − 12 = 0. Identify the regression lines
The age in years of 7 young couples is given below. Calculate husband’s age when wife’s age is 38 years.
Husband (x) | 21 | 25 | 26 | 24 | 22 | 30 | 20 |
Wife (y) | 19 | 20 | 24 | 20 | 22 | 24 | 18 |
The equations of the two lines of regression are 6x + y − 31 = 0 and 3x + 2y – 26 = 0. Identify the regression lines
The equations of the two lines of regression are 6x + y − 31 = 0 and 3x + 2y – 26 = 0. Calculate the mean values of x and y
Two samples from bivariate populations have 15 observations each. The sample means of X and Y are 25 and 18 respectively. The corresponding sum of squares of deviations from means are 136 and 148 respectively. The sum of product of deviations from respective means is 122. Obtain the regression equation of x on y
If n = 6, Σx = 36, Σy = 60, Σxy = –67, Σx2 = 50, Σy2 =106, Estimate y when x is 13
The regression equation of x on y is 40x – 18y = 214 ......(i)
The regression equation of y on x is 8x – 10y + 66 = 0 ......(ii)
Solving equations (i) and (ii),
`barx = square`
`bary = square`
∴ byx = `square/square`
∴ bxy = `square/square`
∴ r = `square`
Given variance of x = 9
∴ byx = `square/square`
∴ `sigma_y = square`
If `(x - 1)/l = (y - 2)/m = (z + 1)/n` is the equation of the line through (1, 2, -1) and (-1, 0, 1), then (l, m, n) is ______
If `bar"X"` = 40, `bar"Y"` = 6, σx = 10, σy = 1.5 and r = 0.9 for the two sets of data X and Y, then the regression line of X on Y will be:
For certain bivariate data on 5 pairs of observations given:
∑x = 20, ∑y = 20, ∑x2 = 90, ∑y2 = 90, ∑xy = 76 then bxy = ______.
Complete the following activity to find, the equation of line of regression of Y on X and X on Y for the following data:
Given:`n=8,sum(x_i-barx)^2=36,sum(y_i-bary)^2=40,sum(x_i-barx)(y_i-bary)=24`
Solution:
Given:`n=8,sum(x_i-barx)=36,sum(y_i-bary)^2=40,sum(x_i-barx)(y_i-bary)=24`
∴ `b_(yx)=(sum(x_i-barx)(y_i-bary))/(sum(x_i-barx)^2)=square`
∴ `b_(xy)=(sum(x_i-barx)(y_i-bary))/(sum(y_i-bary)^2)=square`
∴ regression equation of Y on :
`y-bary=b_(yx)(x-barx)` `y-bary=square(x-barx)`
`x-barx=b_(xy)(y-bary)` `x-barx=square(y-bary)`
Out of the two regression lines x + 2y – 5 = 0 and 2x + 3y = 8, find the line of regression of y on x.
For a bivariate data `barx = 10`, `bary = 12`, V(X) = 9, σy = 4 and r = 0.6
Estimate y when x = 5
Solution: Line of regression of Y on X is
`"Y" - bary = square ("X" - barx)`
∴ Y − 12 = `r.(σ_y)/(σ_x)("X" - 10)`
∴ Y − 12 = `0.6 xx 4/square ("X" - 10)`
∴ When x = 5
Y − 12 = `square(5 - 10)`
∴ Y − 12 = −4
∴ Y = `square`
XYZ company plans to advertise some vacancies. The Manager is asked to suggest the monthly salary for these vacancies based on the years of experience. To do so, the Manager studies the years of service and the monthly salary drawn by the existing employees in the company.
Following is the data that the Manager refers to:
Years of service (X) | 11 | 7 | 9 | 5 | 8 | 6 | 10 |
Monthly salary (in ₹ 1000)(Y) | 10 | 8 | 6 | 5 | 9 | 7 | 11 |
- Find the regression equation of monthly salary on the years of service.
- If a person with 13 years of experience applies for a job in this company, what monthly salary will be suggested by the Manager?