Advertisements
Advertisements
प्रश्न
Identify the regression equations of X on Y and Y on X from the following equations :
2x + 3y = 6 and 5x + 7y – 12 = 0
उत्तर
Let the regression eqn. of y on x is
2x + 3y = 6
3y = -2x + 6
y = `(-2)/3x + 6`
From 5x + 7y - 12 = 0
7y = -5x + 12
y = `(-5)/7 x + 12/7`
b2 = `(-5)/7`
Let b1 = `(-2)/3`
`therefore |b_1|<|b_2|`
`therefore b_1 = b_yx = (-2)/3`
`therefore b_xy = 1/b_2 = (-7)/5`
2x + 3y = 6 is regression line of y on x
5x + 7y - 12 = 0 is regression line of x on y.
APPEARS IN
संबंधित प्रश्न
The equations given of the two regression lines are 2x + 3y - 6 = 0 and 5x + 7y - 12 = 0.
Find:
(a) Correlation coefficient
(b) `sigma_x/sigma_y`
Find the equation of the regression line of y on x, if the observations (x, y) are as follows :
(1,4),(2,8),(3,2),(4,12),(5,10),(6,14),(7,16),(8,6),(9,18)
Also, find the estimated value of y when x = 14.
Find the feasible solution for the following system of linear inequations:
0 ≤ x ≤ 3, 0 ≤ y ≤ 3, x + y ≤ 5, 2x + y ≥ 4
Find graphical solution for following system of linear inequations :
3x + 2y ≤ 180; x+ 2y ≤ 120, x ≥ 0, y ≥ 0
Hence find co-ordinates of corner points of the common region.
For the given lines of regression, 3x – 2y = 5 and x – 4y = 7, find:
(a) regression coefficients byx and bxy
(b) coefficient of correlation r (x, y)
For the following bivariate data obtain the equations of two regression lines:
X | 1 | 2 | 3 | 4 | 5 |
Y | 5 | 7 | 9 | 11 | 13 |
Given the following data, obtain a linear regression estimate of X for Y = 10, `bar x = 7.6, bar y = 14.8, sigma_x = 3.2, sigma_y = 16` and r = 0.7
bYX is ______.
The equation of the line of regression of y on x is y = `2/9` x and x on y is x = `"y"/2 + 7/6`.
Find (i) r, (ii) `sigma_"y"^2 if sigma_"x"^2 = 4`
Identify the regression equations of x on y and y on x from the following equations, 2x + 3y = 6 and 5x + 7y − 12 = 0
If for a bivariate data byx = – 1.2 and bxy = – 0.3 then find r.
From the two regression equations y = 4x – 5 and 3x = 2y + 5, find `bar x and bar y`.
The equations of the two lines of regression are 3x + 2y − 26 = 0 and 6x + y − 31 = 0 Find
- Means of X and Y
- Correlation coefficient between X and Y
- Estimate of Y for X = 2
- var (X) if var (Y) = 36
Find the equation of the line of regression of Y on X for the following data:
n = 8, `sum(x_i - barx).(y_i - bary) = 120, barx = 20, bary = 36, sigma_x = 2, sigma_y = 3`
Regression equation of X on Y is ______
Regression equation of X on Y is_________
Choose the correct alternative:
The slope of the line of regression of y on x is called the ______
Choose the correct alternative:
If the lines of regression of Y on X is y = `x/4` and X on Y is x = `y/9 + 1` then the value of r is
Choose the correct alternative:
y = 5 – 2.8x and x = 3 – 0.5 y be the regression lines, then the value of byx is
State whether the following statement is True or False:
The equations of two regression lines are 10x – 4y = 80 and 10y – 9x = 40. Then bxy = 0.9
State whether the following statement is True or False:
y = 5 + 2.8x and x = 3 + 0.5y be the regression lines of y on x and x on y respectively, then byx = – 0.5
State whether the following statement is True or False:
bxy is the slope of regression line of y on x
Among the given regression lines 6x + y – 31 = 0 and 3x + 2y – 26 = 0, the regression line of x on y is ______
The equations of the two lines of regression are 6x + y − 31 = 0 and 3x + 2y – 26 = 0. Identify the regression lines
The equations of the two lines of regression are 6x + y − 31 = 0 and 3x + 2y – 26 = 0. Calculate the mean values of x and y
Two samples from bivariate populations have 15 observations each. The sample means of X and Y are 25 and 18 respectively. The corresponding sum of squares of deviations from means are 136 and 148 respectively. The sum of product of deviations from respective means is 122. Obtain the regression equation of x on y
If n = 6, Σx = 36, Σy = 60, Σxy = –67, Σx2 = 50, Σy2 =106, Estimate y when x is 13
If `(x - 1)/l = (y - 2)/m = (z + 1)/n` is the equation of the line through (1, 2, -1) and (-1, 0, 1), then (l, m, n) is ______
If `bar"X"` = 40, `bar"Y"` = 6, σx = 10, σy = 1.5 and r = 0.9 for the two sets of data X and Y, then the regression line of X on Y will be:
For certain bivariate data on 5 pairs of observations given:
∑x = 20, ∑y = 20, ∑x2 = 90, ∑y2 = 90, ∑xy = 76 then bxy = ______.
For a bivariate data `barx = 10`, `bary = 12`, V(X) = 9, σy = 4 and r = 0.6
Estimate y when x = 5
Solution: Line of regression of Y on X is
`"Y" - bary = square ("X" - barx)`
∴ Y − 12 = `r.(σ_y)/(σ_x)("X" - 10)`
∴ Y − 12 = `0.6 xx 4/square ("X" - 10)`
∴ When x = 5
Y − 12 = `square(5 - 10)`
∴ Y − 12 = −4
∴ Y = `square`