मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

The equation of the line of regression of y on x is y = 29 x and x on y is x = y2+76.Find (i) r, (ii) σy2ifσx2=4 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The equation of the line of regression of y on x is y = `2/9` x and x on y is x = `"y"/2 + 7/6`.
Find (i) r,  (ii) `sigma_"y"^2 if sigma_"x"^2 = 4`

बेरीज

उत्तर

Given, regression equation of Y on X is

y = `2/9`x

i.e., Y = `2/9`X

Comparing with Y = bYX X + a, we get

`"b"_"YX" = 2/9`

and regression equation of X on Y is

`"x" = "y"/2 + 7/6`

i.e., X = `1/2 "Y" + 7/6`

Comparing it with X = bXYY + a', we get

`"b"_"XY" = 1/2`

(i) r = `+-sqrt("b"_"XY" * "b"_"YX")`

`= +- sqrt(1/2 * 2/9) = +- sqrt(1/9) = +- 1/3`

Since bYX and bXY both are positive,

r is positive.

∴ r = `1/3`

(ii) Given, `sigma_"X"^2 = 4`

∴ σX = 2

we know that, `"b"_"YX" = "r" sigma_"Y"/sigma_"X"`

∴ `sigma_"Y" = ("b"_"YX" xx sigma_"X")/"r" = (2/9 xx 2)/(1/3) = (4 xx 3)/9 = 4/3`

∴ `sigma_"Y"^2 = 16/9`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Linear Regression - Miscellaneous Exercise 3 [पृष्ठ ५४]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Linear Regression
Miscellaneous Exercise 3 | Q 4.04 | पृष्ठ ५४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Given that the observations are: (9, -4), (10, -3), (11, -1), (12, 0), (13, 1), (14, 3), (15, 5), (16, 8). Find the two lines of regression and estimate the value of y when x = 13·5.


Identify the regression equations of X on Y and Y on X from the following equations :
2x + 3y = 6 and 5x + 7y – 12 = 0 


Find the equation of the regression line of y on x, if the observations (x, y) are as follows : 
(1,4),(2,8),(3,2),(4,12),(5,10),(6,14),(7,16),(8,6),(9,18)
Also, find the estimated value of y when x = 14.


Find the feasible solution for the following system of linear inequations:
0 ≤ x ≤ 3, 0 ≤ y ≤ 3, x + y ≤ 5, 2x + y ≥ 4


If Σx1 = 56 Σy1 = 56, Σ`x_1^2` = 478,
Σ`y_1^2` = 476, Σx1y1 = 469 and n = 7, Find
(a) the regression equation of y on x.
(b) y, if x = 12.


Information on v:ehicles [in thousands) passing through seven different highways during a day (X) and number of accidents reported (Y) is given as follows :   

`Sigmax_i` = 105, `Sigmay_i` = 409, n = 7, `Sigmax_i^2` = 1681, `Sigmay_i^2` = 39350 `Sigmax_iy_i` = 8075

  Obtain the linear regression of Y on X.


The two lines of regressions are x + 2y – 5 = 0 and 2x + 3y – 8 = 0 and the variance of x is 12. Find the variance of y and the coefficient of correlation.


For the given lines of regression, 3x – 2y = 5 and x – 4y = 7, find:
(a) regression coefficients byx and bxy
(b) coefficient of correlation r (x, y)


Calculate the Spearman’s rank correlation coefficient for the following data and interpret the result: 

X 35 54 80 95 73 73 35 91 83 81
Y 40 60 75 90 70 75 38 95 75 70

For the following bivariate data obtain the equations of two regression lines:

X 1 2 3 4 5
Y 5 7 9 11 13

From the data of 20 pairs of observations on X and Y, following results are obtained.

`barx` = 199, `bary` = 94,

`sum(x_i - barx)^2` = 1200, `sum(y_i - bary)^2` = 300,

`sum(x_i - bar x)(y_i - bar y)` = –250

Find:

  1. The line of regression of Y on X.
  2. The line of regression of X on Y.
  3. Correlation coefficient between X and Y.

Given the following data, obtain a linear regression estimate of X for Y = 10, `bar x = 7.6, bar y = 14.8, sigma_x = 3.2, sigma_y = 16` and r = 0.7


The data obtained on X, the length of time in weeks that a promotional project has been in progress at a small business, and Y, the percentage increase in weekly sales over the period just prior to the beginning of the campaign.

X 1 2 3 4 1 3 1 2 3 4 2 4
Y 10 10 18 20 11 15 12 15 17 19 13 16

Find the equation of the regression line to predict the percentage increase in sales if the campaign has been in progress for 1.5 weeks.


Identify the regression equations of x on y and y on x from the following equations, 2x + 3y = 6 and 5x + 7y − 12 = 0


If for a bivariate data byx = – 1.2 and bxy = – 0.3 then find r.


The equations of the two lines of regression are 3x + 2y − 26 = 0 and 6x + y − 31 = 0 Find

  1. Means of X and Y
  2. Correlation coefficient between X and Y
  3. Estimate of Y for X = 2
  4. var (X) if var (Y) = 36

Regression equation of X on Y is_________


Choose the correct alternative:

The slope of the line of regression of y on x is called the ______


Choose the correct alternative:

If the lines of regression of Y on X is y = `x/4` and X on Y is x = `y/9 + 1` then the value of r is


State whether the following statement is True or False:

The equations of two regression lines are 10x – 4y = 80 and 10y – 9x = 40. Then bxy = 0.9


State whether the following statement is True or False:

y = 5 + 2.8x and x = 3 + 0.5y be the regression lines of y on x and x on y respectively, then byx = – 0.5


State whether the following statement is True or False:

bxy is the slope of regression line of y on x


If the regression equations are 8x – 10y + 66 = 0 and 40x – 18y = 214, the mean value of y is ______


The equations of the two lines of regression are 2x + 3y − 6 = 0 and 5x + 7y − 12 = 0. Identify the regression lines


The equations of the two lines of regression are 6x + y − 31 = 0 and 3x + 2y – 26 = 0. Identify the regression lines


The equations of the two lines of regression are 6x + y − 31 = 0 and 3x + 2y – 26 = 0. Calculate the mean values of x and y


Two samples from bivariate populations have 15 observations each. The sample means of X and Y are 25 and 18 respectively. The corresponding sum of squares of deviations from means are 136 and 148 respectively. The sum of product of deviations from respective means is 122. Obtain the regression equation of x on y


If n = 5, Σx = Σy = 20, Σx2 = Σy2 = 90, Σxy = 76 Find the regression equation of x on y


The regression equation of x on y is 40x – 18y = 214  ......(i)

The regression equation of y on x is 8x – 10y + 66 = 0  ......(ii)

Solving equations (i) and (ii),

`barx = square`

`bary = square`

∴ byx = `square/square`

∴ bxy = `square/square`

∴ r = `square`

Given variance of x = 9

∴ byx = `square/square`

∴ `sigma_y = square`


If `(x - 1)/l = (y - 2)/m = (z + 1)/n` is the equation of the line through (1, 2, -1) and (-1, 0, 1), then (l, m, n) is ______ 


For certain bivariate data on 5 pairs of observations given:

∑x = 20, ∑y = 20, ∑x2 = 90, ∑y2 = 90, ∑xy = 76 then bxy = ______.


For a bivariate data `barx = 10`, `bary = 12`, V(X) = 9, σy = 4 and r = 0.6
Estimate y when x = 5

Solution: Line of regression of Y on X is

`"Y" - bary = square ("X" - barx)`

∴ Y − 12 = `r.(σ_y)/(σ_x)("X" - 10)`

∴ Y − 12 = `0.6 xx 4/square ("X" - 10)`

∴ When x = 5

Y − 12 = `square(5 - 10)`

∴ Y − 12 = −4

∴ Y = `square`


XYZ company plans to advertise some vacancies. The Manager is asked to suggest the monthly salary for these vacancies based on the years of experience. To do so, the Manager studies the years of service and the monthly salary drawn by the existing employees in the company.

Following is the data that the Manager refers to:

Years of service (X) 11 7 9 5 8 6 10
Monthly salary (in ₹ 1000)(Y) 10 8 6 5 9 7 11
  1. Find the regression equation of monthly salary on the years of service.
  2. If a person with 13 years of experience applies for a job in this company, what monthly salary will be suggested by the Manager?

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×