Advertisements
Advertisements
Question
The equation of the line of regression of y on x is y = `2/9` x and x on y is x = `"y"/2 + 7/6`.
Find (i) r, (ii) `sigma_"y"^2 if sigma_"x"^2 = 4`
Solution
Given, regression equation of Y on X is
y = `2/9`x
i.e., Y = `2/9`X
Comparing with Y = bYX X + a, we get
`"b"_"YX" = 2/9`
and regression equation of X on Y is
`"x" = "y"/2 + 7/6`
i.e., X = `1/2 "Y" + 7/6`
Comparing it with X = bXYY + a', we get
`"b"_"XY" = 1/2`
(i) r = `+-sqrt("b"_"XY" * "b"_"YX")`
`= +- sqrt(1/2 * 2/9) = +- sqrt(1/9) = +- 1/3`
Since bYX and bXY both are positive,
r is positive.
∴ r = `1/3`
(ii) Given, `sigma_"X"^2 = 4`
∴ σX = 2
we know that, `"b"_"YX" = "r" sigma_"Y"/sigma_"X"`
∴ `sigma_"Y" = ("b"_"YX" xx sigma_"X")/"r" = (2/9 xx 2)/(1/3) = (4 xx 3)/9 = 4/3`
∴ `sigma_"Y"^2 = 16/9`
APPEARS IN
RELATED QUESTIONS
The equations given of the two regression lines are 2x + 3y - 6 = 0 and 5x + 7y - 12 = 0.
Find:
(a) Correlation coefficient
(b) `sigma_x/sigma_y`
Identify the regression equations of X on Y and Y on X from the following equations :
2x + 3y = 6 and 5x + 7y – 12 = 0
Find the equation of the regression line of y on x, if the observations (x, y) are as follows :
(1,4),(2,8),(3,2),(4,12),(5,10),(6,14),(7,16),(8,6),(9,18)
Also, find the estimated value of y when x = 14.
Find graphical solution for following system of linear inequations :
3x + 2y ≤ 180; x+ 2y ≤ 120, x ≥ 0, y ≥ 0
Hence find co-ordinates of corner points of the common region.
For the given lines of regression, 3x – 2y = 5 and x – 4y = 7, find:
(a) regression coefficients byx and bxy
(b) coefficient of correlation r (x, y)
Calculate the Spearman’s rank correlation coefficient for the following data and interpret the result:
X | 35 | 54 | 80 | 95 | 73 | 73 | 35 | 91 | 83 | 81 |
Y | 40 | 60 | 75 | 90 | 70 | 75 | 38 | 95 | 75 | 70 |
For the following bivariate data obtain the equations of two regression lines:
X | 1 | 2 | 3 | 4 | 5 |
Y | 5 | 7 | 9 | 11 | 13 |
From the data of 20 pairs of observations on X and Y, following results are obtained.
`barx` = 199, `bary` = 94,
`sum(x_i - barx)^2` = 1200, `sum(y_i - bary)^2` = 300,
`sum(x_i - bar x)(y_i - bar y)` = –250
Find:
- The line of regression of Y on X.
- The line of regression of X on Y.
- Correlation coefficient between X and Y.
Identify the regression equations of x on y and y on x from the following equations, 2x + 3y = 6 and 5x + 7y − 12 = 0
If for a bivariate data byx = – 1.2 and bxy = – 0.3 then find r.
From the two regression equations y = 4x – 5 and 3x = 2y + 5, find `bar x and bar y`.
The equations of the two lines of regression are 3x + 2y − 26 = 0 and 6x + y − 31 = 0 Find
- Means of X and Y
- Correlation coefficient between X and Y
- Estimate of Y for X = 2
- var (X) if var (Y) = 36
Find the equation of the line of regression of Y on X for the following data:
n = 8, `sum(x_i - barx).(y_i - bary) = 120, barx = 20, bary = 36, sigma_x = 2, sigma_y = 3`
Choose the correct alternative:
The slope of the line of regression of y on x is called the ______
Choose the correct alternative:
u = `(x - 20)/5` and v = `(y - 30)/4`, then bxy =
Choose the correct alternative:
y = 5 – 2.8x and x = 3 – 0.5 y be the regression lines, then the value of byx is
State whether the following statement is True or False:
The equations of two regression lines are 10x – 4y = 80 and 10y – 9x = 40. Then bxy = 0.9
State whether the following statement is True or False:
bxy is the slope of regression line of y on x
Among the given regression lines 6x + y – 31 = 0 and 3x + 2y – 26 = 0, the regression line of x on y is ______
If the regression equations are 8x – 10y + 66 = 0 and 40x – 18y = 214, the mean value of y is ______
The age in years of 7 young couples is given below. Calculate husband’s age when wife’s age is 38 years.
Husband (x) | 21 | 25 | 26 | 24 | 22 | 30 | 20 |
Wife (y) | 19 | 20 | 24 | 20 | 22 | 24 | 18 |
The equations of the two lines of regression are 6x + y − 31 = 0 and 3x + 2y – 26 = 0. Identify the regression lines
If n = 5, Σx = Σy = 20, Σx2 = Σy2 = 90, Σxy = 76 Find the regression equation of x on y
If `(x - 1)/l = (y - 2)/m = (z + 1)/n` is the equation of the line through (1, 2, -1) and (-1, 0, 1), then (l, m, n) is ______
Complete the following activity to find, the equation of line of regression of Y on X and X on Y for the following data:
Given:`n=8,sum(x_i-barx)^2=36,sum(y_i-bary)^2=40,sum(x_i-barx)(y_i-bary)=24`
Solution:
Given:`n=8,sum(x_i-barx)=36,sum(y_i-bary)^2=40,sum(x_i-barx)(y_i-bary)=24`
∴ `b_(yx)=(sum(x_i-barx)(y_i-bary))/(sum(x_i-barx)^2)=square`
∴ `b_(xy)=(sum(x_i-barx)(y_i-bary))/(sum(y_i-bary)^2)=square`
∴ regression equation of Y on :
`y-bary=b_(yx)(x-barx)` `y-bary=square(x-barx)`
`x-barx=b_(xy)(y-bary)` `x-barx=square(y-bary)`
Out of the two regression lines x + 2y – 5 = 0 and 2x + 3y = 8, find the line of regression of y on x.
For a bivariate data `barx = 10`, `bary = 12`, V(X) = 9, σy = 4 and r = 0.6
Estimate y when x = 5
Solution: Line of regression of Y on X is
`"Y" - bary = square ("X" - barx)`
∴ Y − 12 = `r.(σ_y)/(σ_x)("X" - 10)`
∴ Y − 12 = `0.6 xx 4/square ("X" - 10)`
∴ When x = 5
Y − 12 = `square(5 - 10)`
∴ Y − 12 = −4
∴ Y = `square`
XYZ company plans to advertise some vacancies. The Manager is asked to suggest the monthly salary for these vacancies based on the years of experience. To do so, the Manager studies the years of service and the monthly salary drawn by the existing employees in the company.
Following is the data that the Manager refers to:
Years of service (X) | 11 | 7 | 9 | 5 | 8 | 6 | 10 |
Monthly salary (in ₹ 1000)(Y) | 10 | 8 | 6 | 5 | 9 | 7 | 11 |
- Find the regression equation of monthly salary on the years of service.
- If a person with 13 years of experience applies for a job in this company, what monthly salary will be suggested by the Manager?