English

Choose the correct alternative: y = 5 – 2.8x and x = 3 – 0.5 y be the regression lines, then the value of byx is - Mathematics and Statistics

Advertisements
Advertisements

Question

Choose the correct alternative:

y = 5 – 2.8x and x = 3 – 0.5 y be the regression lines, then the value of byx is 

Options

  • – 0.5

  • – 2.8

  • 0.5

  • – 2

MCQ

Solution

– 2

shaalaa.com
  Is there an error in this question or solution?
Chapter 2.3: Linear Regression - Q.1

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

The equations given of the two regression lines are 2x + 3y - 6 = 0 and 5x + 7y - 12 = 0.

Find:

(a) Correlation coefficient

(b) `sigma_x/sigma_y`


Given that the observations are: (9, -4), (10, -3), (11, -1), (12, 0), (13, 1), (14, 3), (15, 5), (16, 8). Find the two lines of regression and estimate the value of y when x = 13·5.


Identify the regression equations of X on Y and Y on X from the following equations :
2x + 3y = 6 and 5x + 7y – 12 = 0 


Find the feasible solution for the following system of linear inequations:
0 ≤ x ≤ 3, 0 ≤ y ≤ 3, x + y ≤ 5, 2x + y ≥ 4


If Σx1 = 56 Σy1 = 56, Σ`x_1^2` = 478,
Σ`y_1^2` = 476, Σx1y1 = 469 and n = 7, Find
(a) the regression equation of y on x.
(b) y, if x = 12.


Compute the product moment coefficient of correlation for the following data: 
n = 100, `bar x` = 62, `bary` = 53, `sigma_x` = 10, `sigma_y` = 12

`Sigma (x_i - bar x) (y_i - bary) = 8000`


For the given lines of regression, 3x – 2y = 5 and x – 4y = 7, find:
(a) regression coefficients byx and bxy
(b) coefficient of correlation r (x, y)


Calculate the Spearman’s rank correlation coefficient for the following data and interpret the result: 

X 35 54 80 95 73 73 35 91 83 81
Y 40 60 75 90 70 75 38 95 75 70

For the following bivariate data obtain the equations of two regression lines:

X 1 2 3 4 5
Y 5 7 9 11 13

Given the following data, obtain a linear regression estimate of X for Y = 10, `bar x = 7.6, bar y = 14.8, sigma_x = 3.2, sigma_y = 16` and r = 0.7


bYX is ______.


If for bivariate data `bar x = 10, bar y = 12,` v(x) = 9, σy = 4 and r = 0.6 estimate y, when x = 5.


The equation of the line of regression of y on x is y = `2/9` x and x on y is x = `"y"/2 + 7/6`.
Find (i) r,  (ii) `sigma_"y"^2 if sigma_"x"^2 = 4`


Identify the regression equations of x on y and y on x from the following equations, 2x + 3y = 6 and 5x + 7y − 12 = 0


If for a bivariate data byx = – 1.2 and bxy = – 0.3 then find r.


Regression equation of X on Y is ______


Regression equation of X on Y is_________


Choose the correct alternative:

If the lines of regression of Y on X is y = `x/4` and X on Y is x = `y/9 + 1` then the value of r is


Choose the correct alternative:

u = `(x - 20)/5` and v = `(y - 30)/4`, then bxy


State whether the following statement is True or False:

y = 5 + 2.8x and x = 3 + 0.5y be the regression lines of y on x and x on y respectively, then byx = – 0.5


State whether the following statement is True or False:

If equation of regression lines are 3x + 2y – 26 = 0 and 6x + y – 31= 0, then mean of X is 7


State whether the following statement is True or False:

bxy is the slope of regression line of y on x


The equations of the two lines of regression are 2x + 3y − 6 = 0 and 5x + 7y − 12 = 0. Identify the regression lines


The equations of the two lines of regression are 6x + y − 31 = 0 and 3x + 2y – 26 = 0. Identify the regression lines


The equations of the two lines of regression are 6x + y − 31 = 0 and 3x + 2y – 26 = 0. Calculate the mean values of x and y


Two samples from bivariate populations have 15 observations each. The sample means of X and Y are 25 and 18 respectively. The corresponding sum of squares of deviations from means are 136 and 148 respectively. The sum of product of deviations from respective means is 122. Obtain the regression equation of x on y


If n = 6, Σx = 36, Σy = 60, Σxy = –67, Σx2 = 50, Σy2 =106, Estimate y when x is 13


Complete the following activity to find, the equation of line of regression of Y on X and X on Y for the following data:

Given:`n=8,sum(x_i-barx)^2=36,sum(y_i-bary)^2=40,sum(x_i-barx)(y_i-bary)=24`

Solution:

Given:`n=8,sum(x_i-barx)=36,sum(y_i-bary)^2=40,sum(x_i-barx)(y_i-bary)=24`

∴ `b_(yx)=(sum(x_i-barx)(y_i-bary))/(sum(x_i-barx)^2)=square`

∴ `b_(xy)=(sum(x_i-barx)(y_i-bary))/(sum(y_i-bary)^2)=square`

∴ regression equation of Y on :

`y-bary=b_(yx)(x-barx)` `y-bary=square(x-barx)`

`x-barx=b_(xy)(y-bary)`  `x-barx=square(y-bary)`


Out of the two regression lines x + 2y – 5 = 0 and 2x + 3y = 8, find the line of regression of y on x.


For a bivariate data `barx = 10`, `bary = 12`, V(X) = 9, σy = 4 and r = 0.6
Estimate y when x = 5

Solution: Line of regression of Y on X is

`"Y" - bary = square ("X" - barx)`

∴ Y − 12 = `r.(σ_y)/(σ_x)("X" - 10)`

∴ Y − 12 = `0.6 xx 4/square ("X" - 10)`

∴ When x = 5

Y − 12 = `square(5 - 10)`

∴ Y − 12 = −4

∴ Y = `square`


XYZ company plans to advertise some vacancies. The Manager is asked to suggest the monthly salary for these vacancies based on the years of experience. To do so, the Manager studies the years of service and the monthly salary drawn by the existing employees in the company.

Following is the data that the Manager refers to:

Years of service (X) 11 7 9 5 8 6 10
Monthly salary (in ₹ 1000)(Y) 10 8 6 5 9 7 11
  1. Find the regression equation of monthly salary on the years of service.
  2. If a person with 13 years of experience applies for a job in this company, what monthly salary will be suggested by the Manager?

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×