Advertisements
Advertisements
Question
Regression equation of X on Y is_________
Solution
Regression equation of X on Y is `bbunderline(("x" - bar "x") = "b"_"XY" ("y" - bar "y"))`
APPEARS IN
RELATED QUESTIONS
The equations given of the two regression lines are 2x + 3y - 6 = 0 and 5x + 7y - 12 = 0.
Find:
(a) Correlation coefficient
(b) `sigma_x/sigma_y`
Given that the observations are: (9, -4), (10, -3), (11, -1), (12, 0), (13, 1), (14, 3), (15, 5), (16, 8). Find the two lines of regression and estimate the value of y when x = 13·5.
Identify the regression equations of X on Y and Y on X from the following equations :
2x + 3y = 6 and 5x + 7y – 12 = 0
Find the equation of the regression line of y on x, if the observations (x, y) are as follows :
(1,4),(2,8),(3,2),(4,12),(5,10),(6,14),(7,16),(8,6),(9,18)
Also, find the estimated value of y when x = 14.
Find the feasible solution for the following system of linear inequations:
0 ≤ x ≤ 3, 0 ≤ y ≤ 3, x + y ≤ 5, 2x + y ≥ 4
Compute the product moment coefficient of correlation for the following data:
n = 100, `bar x` = 62, `bary` = 53, `sigma_x` = 10, `sigma_y` = 12
`Sigma (x_i - bar x) (y_i - bary) = 8000`
Information on v:ehicles [in thousands) passing through seven different highways during a day (X) and number of accidents reported (Y) is given as follows :
`Sigmax_i` = 105, `Sigmay_i` = 409, n = 7, `Sigmax_i^2` = 1681, `Sigmay_i^2` = 39350 `Sigmax_iy_i` = 8075
Obtain the linear regression of Y on X.
The two lines of regressions are x + 2y – 5 = 0 and 2x + 3y – 8 = 0 and the variance of x is 12. Find the variance of y and the coefficient of correlation.
For the given lines of regression, 3x – 2y = 5 and x – 4y = 7, find:
(a) regression coefficients byx and bxy
(b) coefficient of correlation r (x, y)
Calculate the Spearman’s rank correlation coefficient for the following data and interpret the result:
X | 35 | 54 | 80 | 95 | 73 | 73 | 35 | 91 | 83 | 81 |
Y | 40 | 60 | 75 | 90 | 70 | 75 | 38 | 95 | 75 | 70 |
From the data of 20 pairs of observations on X and Y, following results are obtained.
`barx` = 199, `bary` = 94,
`sum(x_i - barx)^2` = 1200, `sum(y_i - bary)^2` = 300,
`sum(x_i - bar x)(y_i - bar y)` = –250
Find:
- The line of regression of Y on X.
- The line of regression of X on Y.
- Correlation coefficient between X and Y.
The data obtained on X, the length of time in weeks that a promotional project has been in progress at a small business, and Y, the percentage increase in weekly sales over the period just prior to the beginning of the campaign.
X | 1 | 2 | 3 | 4 | 1 | 3 | 1 | 2 | 3 | 4 | 2 | 4 |
Y | 10 | 10 | 18 | 20 | 11 | 15 | 12 | 15 | 17 | 19 | 13 | 16 |
Find the equation of the regression line to predict the percentage increase in sales if the campaign has been in progress for 1.5 weeks.
The equation of the line of regression of y on x is y = `2/9` x and x on y is x = `"y"/2 + 7/6`.
Find (i) r, (ii) `sigma_"y"^2 if sigma_"x"^2 = 4`
If for a bivariate data byx = – 1.2 and bxy = – 0.3 then find r.
Find the equation of the line of regression of Y on X for the following data:
n = 8, `sum(x_i - barx).(y_i - bary) = 120, barx = 20, bary = 36, sigma_x = 2, sigma_y = 3`
Choose the correct alternative:
The slope of the line of regression of y on x is called the ______
Choose the correct alternative:
u = `(x - 20)/5` and v = `(y - 30)/4`, then bxy =
State whether the following statement is True or False:
The equations of two regression lines are 10x – 4y = 80 and 10y – 9x = 40. Then bxy = 0.9
State whether the following statement is True or False:
y = 5 + 2.8x and x = 3 + 0.5y be the regression lines of y on x and x on y respectively, then byx = – 0.5
State whether the following statement is True or False:
bxy is the slope of regression line of y on x
Among the given regression lines 6x + y – 31 = 0 and 3x + 2y – 26 = 0, the regression line of x on y is ______
If the regression equations are 8x – 10y + 66 = 0 and 40x – 18y = 214, the mean value of y is ______
The age in years of 7 young couples is given below. Calculate husband’s age when wife’s age is 38 years.
Husband (x) | 21 | 25 | 26 | 24 | 22 | 30 | 20 |
Wife (y) | 19 | 20 | 24 | 20 | 22 | 24 | 18 |
The equations of the two lines of regression are 6x + y − 31 = 0 and 3x + 2y – 26 = 0. Calculate the mean values of x and y
If n = 5, Σx = Σy = 20, Σx2 = Σy2 = 90, Σxy = 76 Find the regression equation of x on y
If n = 6, Σx = 36, Σy = 60, Σxy = –67, Σx2 = 50, Σy2 =106, Estimate y when x is 13
The regression equation of x on y is 40x – 18y = 214 ......(i)
The regression equation of y on x is 8x – 10y + 66 = 0 ......(ii)
Solving equations (i) and (ii),
`barx = square`
`bary = square`
∴ byx = `square/square`
∴ bxy = `square/square`
∴ r = `square`
Given variance of x = 9
∴ byx = `square/square`
∴ `sigma_y = square`
If `(x - 1)/l = (y - 2)/m = (z + 1)/n` is the equation of the line through (1, 2, -1) and (-1, 0, 1), then (l, m, n) is ______
For certain bivariate data on 5 pairs of observations given:
∑x = 20, ∑y = 20, ∑x2 = 90, ∑y2 = 90, ∑xy = 76 then bxy = ______.
The management of a large furniture store would like to determine sales (in thousands of ₹) (X) on a given day on the basis of number of people (Y) that visited the store on that day. The necessary records were kept, and a random sample of ten days was selected for the study. The summary results were as follows:
`sumx_i = 370 , sumy_i = 580, sumx_i^2 = 17200 , sumy_i^2 = 41640, sumx_iy_i = 11500, n = 10`
For a bivariate data `barx = 10`, `bary = 12`, V(X) = 9, σy = 4 and r = 0.6
Estimate y when x = 5
Solution: Line of regression of Y on X is
`"Y" - bary = square ("X" - barx)`
∴ Y − 12 = `r.(σ_y)/(σ_x)("X" - 10)`
∴ Y − 12 = `0.6 xx 4/square ("X" - 10)`
∴ When x = 5
Y − 12 = `square(5 - 10)`
∴ Y − 12 = −4
∴ Y = `square`
XYZ company plans to advertise some vacancies. The Manager is asked to suggest the monthly salary for these vacancies based on the years of experience. To do so, the Manager studies the years of service and the monthly salary drawn by the existing employees in the company.
Following is the data that the Manager refers to:
Years of service (X) | 11 | 7 | 9 | 5 | 8 | 6 | 10 |
Monthly salary (in ₹ 1000)(Y) | 10 | 8 | 6 | 5 | 9 | 7 | 11 |
- Find the regression equation of monthly salary on the years of service.
- If a person with 13 years of experience applies for a job in this company, what monthly salary will be suggested by the Manager?