Advertisements
Advertisements
Question
The two lines of regressions are x + 2y – 5 = 0 and 2x + 3y – 8 = 0 and the variance of x is 12. Find the variance of y and the coefficient of correlation.
Solution
Let y = `-1/2"x"+5/2` be the regression line of y on x
and x =`-3/2"y" +8/2` be the regression line of x on y
Now, byx=`-1/2 "b"_("yx") = -3/2`
`sqrt("b"_("yx")."b"_("xy")) = sqrt(( -1)/2.(-3)/2)`
`=sqrt(3/4) =(-sqrt3)/2 <1`
r =`(-sqrt3)/2`
Now, `sigma_"x"=sqrt12=2sqrt3`
We have: `"b"_("yx") = "r" sigma_"y"/sigma_"x"`
`-1/2=-sqrt3/2.sigma_"y"/(2sqrt3)`
⇒ `sigma_"y"=2`
∴ Variance of y =4
coefficient of correlation = `(-sqrt3)/2` ...(same sign as `"b"_("yx") and "b"_("yx"`)
APPEARS IN
RELATED QUESTIONS
Identify the regression equations of X on Y and Y on X from the following equations :
2x + 3y = 6 and 5x + 7y – 12 = 0
Find the equation of the regression line of y on x, if the observations (x, y) are as follows :
(1,4),(2,8),(3,2),(4,12),(5,10),(6,14),(7,16),(8,6),(9,18)
Also, find the estimated value of y when x = 14.
Find the feasible solution for the following system of linear inequations:
0 ≤ x ≤ 3, 0 ≤ y ≤ 3, x + y ≤ 5, 2x + y ≥ 4
Compute the product moment coefficient of correlation for the following data:
n = 100, `bar x` = 62, `bary` = 53, `sigma_x` = 10, `sigma_y` = 12
`Sigma (x_i - bar x) (y_i - bary) = 8000`
Information on v:ehicles [in thousands) passing through seven different highways during a day (X) and number of accidents reported (Y) is given as follows :
`Sigmax_i` = 105, `Sigmay_i` = 409, n = 7, `Sigmax_i^2` = 1681, `Sigmay_i^2` = 39350 `Sigmax_iy_i` = 8075
Obtain the linear regression of Y on X.
For the given lines of regression, 3x – 2y = 5 and x – 4y = 7, find:
(a) regression coefficients byx and bxy
(b) coefficient of correlation r (x, y)
Calculate the Spearman’s rank correlation coefficient for the following data and interpret the result:
X | 35 | 54 | 80 | 95 | 73 | 73 | 35 | 91 | 83 | 81 |
Y | 40 | 60 | 75 | 90 | 70 | 75 | 38 | 95 | 75 | 70 |
From the data of 20 pairs of observations on X and Y, following results are obtained.
`barx` = 199, `bary` = 94,
`sum(x_i - barx)^2` = 1200, `sum(y_i - bary)^2` = 300,
`sum(x_i - bar x)(y_i - bar y)` = –250
Find:
- The line of regression of Y on X.
- The line of regression of X on Y.
- Correlation coefficient between X and Y.
Given the following data, obtain a linear regression estimate of X for Y = 10, `bar x = 7.6, bar y = 14.8, sigma_x = 3.2, sigma_y = 16` and r = 0.7
bYX is ______.
The data obtained on X, the length of time in weeks that a promotional project has been in progress at a small business, and Y, the percentage increase in weekly sales over the period just prior to the beginning of the campaign.
X | 1 | 2 | 3 | 4 | 1 | 3 | 1 | 2 | 3 | 4 | 2 | 4 |
Y | 10 | 10 | 18 | 20 | 11 | 15 | 12 | 15 | 17 | 19 | 13 | 16 |
Find the equation of the regression line to predict the percentage increase in sales if the campaign has been in progress for 1.5 weeks.
If for a bivariate data byx = – 1.2 and bxy = – 0.3 then find r.
Find the equation of the line of regression of Y on X for the following data:
n = 8, `sum(x_i - barx).(y_i - bary) = 120, barx = 20, bary = 36, sigma_x = 2, sigma_y = 3`
Regression equation of X on Y is ______
Regression equation of X on Y is_________
Choose the correct alternative:
If the lines of regression of Y on X is y = `x/4` and X on Y is x = `y/9 + 1` then the value of r is
Choose the correct alternative:
y = 5 – 2.8x and x = 3 – 0.5 y be the regression lines, then the value of byx is
State whether the following statement is True or False:
The equations of two regression lines are 10x – 4y = 80 and 10y – 9x = 40. Then bxy = 0.9
State whether the following statement is True or False:
If equation of regression lines are 3x + 2y – 26 = 0 and 6x + y – 31= 0, then mean of X is 7
State whether the following statement is True or False:
bxy is the slope of regression line of y on x
If the regression equations are 8x – 10y + 66 = 0 and 40x – 18y = 214, the mean value of y is ______
The equations of the two lines of regression are 2x + 3y − 6 = 0 and 5x + 7y − 12 = 0. Identify the regression lines
The equations of the two lines of regression are 6x + y − 31 = 0 and 3x + 2y – 26 = 0. Identify the regression lines
If n = 6, Σx = 36, Σy = 60, Σxy = –67, Σx2 = 50, Σy2 =106, Estimate y when x is 13
For a bivariate data `barx = 10`, `bary = 12`, V(X) = 9, σy = 4 and r = 0.6
Estimate y when x = 5
Solution: Line of regression of Y on X is
`"Y" - bary = square ("X" - barx)`
∴ Y − 12 = `r.(σ_y)/(σ_x)("X" - 10)`
∴ Y − 12 = `0.6 xx 4/square ("X" - 10)`
∴ When x = 5
Y − 12 = `square(5 - 10)`
∴ Y − 12 = −4
∴ Y = `square`