मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Compute the Product Moment Coefficient of Correlation for the Following Data: - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Compute the product moment coefficient of correlation for the following data: 
n = 100, `bar x` = 62, `bary` = 53, `sigma_x` = 10, `sigma_y` = 12

`Sigma (x_i - bar x) (y_i - bary) = 8000`

बेरीज

उत्तर

Given : n = 100, `bar x` = 62, `bary` = 53, `sigma_x` = 10, `sigma_y` = 12

`Sigma (x_i - bar x) (y_i - bary) = 8000`

Cov (X,Y) = `(Sigma (x_i - bar x) (y_i - bary))/n`

               = `8000/100`

Cov (X,Y) = 80

Product moment correlation coefficient.

r = `(cov(X,Y))/(sigmax  sigmay)`

 = `80/(10 xx 12)`

r = 0.667

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2013-2014 (October)

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Given that the observations are: (9, -4), (10, -3), (11, -1), (12, 0), (13, 1), (14, 3), (15, 5), (16, 8). Find the two lines of regression and estimate the value of y when x = 13·5.


Identify the regression equations of X on Y and Y on X from the following equations :
2x + 3y = 6 and 5x + 7y – 12 = 0 


If Σx1 = 56 Σy1 = 56, Σ`x_1^2` = 478,
Σ`y_1^2` = 476, Σx1y1 = 469 and n = 7, Find
(a) the regression equation of y on x.
(b) y, if x = 12.


Find graphical solution for following system of linear inequations :
3x + 2y ≤ 180; x+ 2y ≤ 120, x ≥ 0, y ≥ 0
Hence find co-ordinates of corner points of the common region.


Information on v:ehicles [in thousands) passing through seven different highways during a day (X) and number of accidents reported (Y) is given as follows :   

`Sigmax_i` = 105, `Sigmay_i` = 409, n = 7, `Sigmax_i^2` = 1681, `Sigmay_i^2` = 39350 `Sigmax_iy_i` = 8075

  Obtain the linear regression of Y on X.


For the given lines of regression, 3x – 2y = 5 and x – 4y = 7, find:
(a) regression coefficients byx and bxy
(b) coefficient of correlation r (x, y)


Calculate the Spearman’s rank correlation coefficient for the following data and interpret the result: 

X 35 54 80 95 73 73 35 91 83 81
Y 40 60 75 90 70 75 38 95 75 70

For the following bivariate data obtain the equations of two regression lines:

X 1 2 3 4 5
Y 5 7 9 11 13

Given the following data, obtain a linear regression estimate of X for Y = 10, `bar x = 7.6, bar y = 14.8, sigma_x = 3.2, sigma_y = 16` and r = 0.7


bYX is ______.


If for a bivariate data byx = – 1.2 and bxy = – 0.3 then find r.


From the two regression equations y = 4x – 5 and 3x = 2y + 5, find `bar x and bar y`.


Find the equation of the line of regression of Y on X for the following data:

n = 8, `sum(x_i - barx).(y_i - bary) = 120, barx = 20, bary = 36, sigma_x = 2, sigma_y = 3`


In the regression equation of Y on X, byx represents slope of the line.


Choose the correct alternative:

If the lines of regression of Y on X is y = `x/4` and X on Y is x = `y/9 + 1` then the value of r is


State whether the following statement is True or False:

The equations of two regression lines are 10x – 4y = 80 and 10y – 9x = 40. Then bxy = 0.9


State whether the following statement is True or False:

y = 5 + 2.8x and x = 3 + 0.5y be the regression lines of y on x and x on y respectively, then byx = – 0.5


State whether the following statement is True or False:

If equation of regression lines are 3x + 2y – 26 = 0 and 6x + y – 31= 0, then mean of X is 7


If the regression equations are 8x – 10y + 66 = 0 and 40x – 18y = 214, the mean value of y is ______


The equations of the two lines of regression are 2x + 3y − 6 = 0 and 5x + 7y − 12 = 0. Identify the regression lines


The age in years of 7 young couples is given below. Calculate husband’s age when wife’s age is 38 years.

Husband (x) 21 25 26 24 22 30 20
Wife (y) 19 20 24 20 22 24 18

The equations of the two lines of regression are 6x + y − 31 = 0 and 3x + 2y – 26 = 0. Identify the regression lines


Two samples from bivariate populations have 15 observations each. The sample means of X and Y are 25 and 18 respectively. The corresponding sum of squares of deviations from means are 136 and 148 respectively. The sum of product of deviations from respective means is 122. Obtain the regression equation of x on y


If n = 5, Σx = Σy = 20, Σx2 = Σy2 = 90, Σxy = 76 Find the regression equation of x on y


If n = 6, Σx = 36, Σy = 60, Σxy = –67, Σx2 = 50, Σy2 =106, Estimate y when x is 13


If `bar"X"` = 40, `bar"Y"` = 6, σx = 10, σy = 1.5 and r = 0.9 for the two sets of data X and Y, then the regression line of X on Y will be:


For certain bivariate data on 5 pairs of observations given:

∑x = 20, ∑y = 20, ∑x2 = 90, ∑y2 = 90, ∑xy = 76 then bxy = ______.


Out of the two regression lines x + 2y – 5 = 0 and 2x + 3y = 8, find the line of regression of y on x.


For a bivariate data `barx = 10`, `bary = 12`, V(X) = 9, σy = 4 and r = 0.6
Estimate y when x = 5

Solution: Line of regression of Y on X is

`"Y" - bary = square ("X" - barx)`

∴ Y − 12 = `r.(σ_y)/(σ_x)("X" - 10)`

∴ Y − 12 = `0.6 xx 4/square ("X" - 10)`

∴ When x = 5

Y − 12 = `square(5 - 10)`

∴ Y − 12 = −4

∴ Y = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×