Advertisements
Advertisements
प्रश्न
Identify whether the following is set or not? Justify your answer.
The collection of questions in this Chapter.
उत्तर
The collection of questions in this chapter is a well-defined collection because one can definitely identify a question that belongs to this chapter.
Hence, this collection is a set.
APPEARS IN
संबंधित प्रश्न
Write the following set in roster form:
F = The set of all letters in the word BETTER
Write the following set in the set-builder form:
{3, 6, 9, 12}
List all the elements of the following set:
B = `{x : x "is an integer", -1/2 < x < 9/2}`
Which of the following collection are sets? Justify your answer:
A collection of novels written by Munshi Prem Chand.
If A = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], then insert the appropriate symbol ∈ or ∉ in each of the following blank space:
12 ...... A
If A = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], then insert the appropriate symbol ∈ or ∉ in each of the following blank space:
9 ...... A
If A = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], then insert the appropriate symbol ∈ or ∉ in each of the following blank space:
0 ...... A
Describe the following sets in Roster form:
{x ∈ N : x2 < 25};
Describe the following sets in Roster form:
{x ∈ N : x is a prime number, 10 < x < 20};
Describe the following sets in Roster form:
The set of all letters in the word 'Better'.
Describe the following sets in set-builder form:
D = {10, 11, 12, 13, 14, 15};
Describe the following sets in set-builder form:
E = {0}
Describe the following sets in set-builder form:
{2, 4, 6, 8 .....}
List all the elements of the following sets:
\[A = \left\{ x: x^2 \leq 10, x \in Z \right\}\]
Match each of the sets on the left in the roster form with the same set on the right described in the set-builder form:
(i) | {A, P, L, E} | (i) | x : x + 5 = 5, x ∈ Z |
(ii) | {5, −5} | (ii) | {x : x is a prime natural number and a divisor of 10} |
(iii) | {0} | (iii) | {x : x is a letter of the word "RAJASTHAN"} |
(iv) | {1, 2, 5, 10,} | (iv) | {x: x is a natural number and divisor of 10} |
(v) | {A, H, J, R, S, T, N} | (v) | x : x2 − 25 = 0 |
(vi) | {2, 5} | (vi) | {x : x is a letter of the word "APPLE"} |
Which of the following statement are correct?
Write a correct form of each of the incorrect statements.
\[a \subset \left\{ a, b, c \right\}\]
Let A = {a, b, {c, d}, e}. Which of the following statement are false and why?
\[\left\{ \left\{ c, d \right\} \right\} \subset A\]
Let A = {a, b, {c, d}, e}. Which of the following statements are false and why?
\[\left\{ a, b, e \right\} \in A\]
Let A = {{1, 2, 3}, {4, 5}, {6, 7, 8}}. Determine which of the following is true or false:
\[\left\{ 1, 2, 3 \right\} \subset A\]
Let \[A = \left\{ \phi, \left\{ \phi \right\}, 1, \left\{ 1, \phi \right\}, 2 \right\}\]Which of the following are true? \[\left\{ \left\{ 2 \right\}, \left\{ 1 \right\} \right\} \not\subset A\]
Write down all possible proper subsets each of the following set:
{1, 2},
Let A = {1, 2, 3, 4, 5, 6}. Insert the appropriate symbol ∈ or ∉ in the blank space:
10 _____ A
Describe the following set in Roster form
A = {x/x is a letter of the word 'MOVEMENT'}
Describe the following set in Roster form
C = {x/x = 2n + 1, n ∈ N}
Describe the following set in Set-Builder form
{0}
Describe the following set in Set-Builder form
{0, –1, 2, –3, 4, –5, 6, ...}
If A = {x/6x2 + x – 15 = 0}, B = {x/2x2 – 5x – 3 = 0}, C = {x/2x2 – x – 3 = 0} then find (A ∩ B ∩ C)
From amongst 2000 literate individuals of a town, 70% read Marathi newspapers, 50% read English newspapers and 32.5% read both Marathi and English newspapers. Find the number of individuals who read neither Marathi and English newspaper
There are 260 persons with skin disorders. If 150 had been exposed to the chemical A, 74 to the chemical B, and 36 to both chemicals A and B, find the number of persons exposed to Chemical A or Chemical B
Write the following interval in Set-Builder form
`(6, ∞)`
Given that E = {2, 4, 6, 8, 10}. If n represents any member of E, then, write the following sets containing all numbers represented by n2
Out of 100 students; 15 passed in English, 12 passed in Mathematics, 8 in Science, 6 in English and Mathematics, 7 in Mathematics and Science; 4 in English and Science; 4 in all the three. Find how many passed in English and Mathematics but not in Science.
Out of 100 students; 15 passed in English, 12 passed in Mathematics, 8 in Science, 6 in English and Mathematics, 7 in Mathematics and Science; 4 in English and Science; 4 in all the three. Find how many passed in Mathematics only
In a class of 60 students, 25 students play cricket and 20 students play tennis, and 10 students play both the games. Then, the number of students who play neither is ______.
Let S = {x | x is a positive multiple of 3 less than 100}
P = {x | x is a prime number less than 20}. Then n(S) + n(P) is ______.
State True or False for the following statement.
Given A = {0, 1, 2}, B = {x ∈ R | 0 ≤ x ≤ 2}. Then A = B.