Advertisements
Advertisements
प्रश्न
If 2x + 1 is a factor of 2x2 + ax – 3, find the value of a.
उत्तर
2x + 1 is a factor of f(x) = 2x2 + ax – 3.
∴ `f((-1)/2) = 0`
`\implies 2((-1)/2)^2 + a((-1)/2) - 3 = 0`
`\implies 1/2 - a/2 = 3`
`\implies` 1 – a = 6
`\implies` a = –5
APPEARS IN
संबंधित प्रश्न
Find the values of m and n so that x – 1 and x + 2 both are factors of x3 + (3m + 1)x2 + nx – 18.
Using the Factor Theorem, show that (x + 5) is a factor of 2x3 + 5x2 – 28x – 15. Hence, factorise the expression 2x3 + 5x2 – 28x – 15 completely.
Using the Factor Theorem, show that (3x + 2) is a factor of 3x3 + 2x2 – 3x – 2. Hence, factorise the expression 3x3 + 2x2 – 3x – 2 completely.
What should be subtracted from 3x3 – 8x2 + 4x – 3, so that the resulting expression has x + 2 as a factor?
Prove by factor theorem that
(2x - 1) is a factor of 6x3 - x2 - 5x +2
In the following problems use the factor theorem to find if g(x) is a factor of p(x):
p(x) = 2x3 + 4x + 6 and g(x) = x + 1
Use factor theorem to factorise the following polynominals completely. x3 – 13x – 12.
If (3x – 2) is a factor of 3x3 – kx2 + 21x – 10, find the value of k.
If x – 2 is a factor of x3 – kx – 12, then the value of k is ______.
Factors of 4 + 4x – x2 – x3 are ______.