हिंदी

If A=`[[2 3],[-1 0]]`Show That A2 − 2a + 3i2 = O - Mathematics

Advertisements
Advertisements

प्रश्न

\[A = \begin{bmatrix}2 & 3 \\ - 1 & 0\end{bmatrix}\],show that A2 − 2A + 3I2 = O

योग

उत्तर

\[Given: A = \begin{bmatrix}2 & 3 \\ - 1 & 0\end{bmatrix}\]
\[Now, \]
\[ A^2 = AA\]
\[ \Rightarrow A^2 = \begin{bmatrix}2 & 3 \\ - 1 & 0\end{bmatrix}\begin{bmatrix}2 & 3 \\ - 1 & 0\end{bmatrix}\]
\[ \Rightarrow A^2 = \begin{bmatrix}4 - 3 & 6 + 0 \\ - 2 + 0 & - 3 + 0\end{bmatrix}\]
\[ \Rightarrow A^2 = \begin{bmatrix}1 & 6 \\ - 2 & - 3\end{bmatrix}\]
\[\]
\[ A^2 - 2A + 3 I_2 \]
\[ \Rightarrow A^2 - 2A + 3 I_2 = \begin{bmatrix}1 & 6 \\ - 2 & - 3\end{bmatrix} - 2\begin{bmatrix}2 & 3 \\ - 1 & 0\end{bmatrix} + 3\begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\]
\[ \Rightarrow A^2 - 2A + 3 I_2 = \begin{bmatrix}1 & 6 \\ - 2 & - 3\end{bmatrix} - \begin{bmatrix}4 & 6 \\ - 2 & 0\end{bmatrix} + \begin{bmatrix}3 & 0 \\ 0 & 3\end{bmatrix}\]
\[ \Rightarrow A^2 - 2A + 3 I_2 = \begin{bmatrix}1 - 4 + 3 & 6 - 6 + 0 \\ - 2 + 2 + 0 & - 3 + 0 + 3\end{bmatrix}\]
\[ \Rightarrow A^2 - 2A + 3 I_2 = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix} = 0\]
\[\]
Hence proved .

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Algebra of Matrices - Exercise 5.3 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 5 Algebra of Matrices
Exercise 5.3 | Q 30 | पृष्ठ ४३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

if `[[9,-1,4],[-2,1,3]]=A+[[1,2,-1],[0,4,9]]`, then find the matrix A.

 

Given the matrices 

`A=[[2,1,1],[3,-1,0],[0,2,4]]` , `B=[[9,7,-1],[3,5,4],[2,1,6]]`  `and  C=[[2,-4,3],[1,-1,0],[9,4,5]]`

Verify that (A + B) + C = A + (B + C).

 

Find matrix A, if  `[[1         2      -1],[0         4       9]]`

`+ A = [[9        -1           4],[-2        1            3]]`


Show that the matrix  \[A = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\]satisfies the equation A3 − 4A2 + A = O


If \[A^T = \begin{bmatrix}3 & 4 \\ - 1 & 2 \\ 0 & 1\end{bmatrix} and B = \begin{bmatrix}- 1 & 2 & 1 \\ 1 & 2 & 3\end{bmatrix}\] , find AT − BT.
 

 


If \[A = \begin{bmatrix}3 & - 4 \\ 1 & - 1\end{bmatrix}\] , show that A − AT is a skewsymmetric matrix.
 

 


If \[\begin{bmatrix}x & x - y \\ 2x + y & 7\end{bmatrix} = \begin{bmatrix}3 & 1 \\ 8 & 7\end{bmatrix}\]  , then find the value of y.


If  \[\begin{bmatrix}9 & - 1 & 4 \\ - 2 & 1 & 3\end{bmatrix} = A + \begin{bmatrix}1 & 2 & - 1 \\ 0 & 4 & 9\end{bmatrix}\] , then find matrix A.


If  \[\begin{bmatrix}a - b & 2a + c \\ 2a - b & 3c + d\end{bmatrix} = \begin{bmatrix}- 1 & 5 \\ 0 & 13\end{bmatrix}\] , find the value of b.


If matrix  \[A = \begin{bmatrix}2 & - 2 \\ - 2 & 2\end{bmatrix}\]  and A2 = pA, then write the value of p.

 


If \[\begin{bmatrix}a + 4 & 3b \\ 8 & - 6\end{bmatrix} = \begin{bmatrix}2a + 2 & b + 2 \\ 8 & a - 8b\end{bmatrix}\] , write the value of a − 2b.

 


If \[A = \begin{bmatrix}0 & 2 \\ 3 & - 4\end{bmatrix}\]  and \[kA = \begin{bmatrix}0 & 3a \\ 2b & 24\end{bmatrix}\]  then the values of kab, are respectively 


Find matrix X so that `x ((1,2,3),(4,5,6)) = ((-7,-8,-9),(2,4,6))`.


If \[A = \begin{bmatrix}2 & - 1 \\ - 1 & 2\end{bmatrix}\] and I is the identity matrix of order 2, then show that A2= 4 A − 3 I. Hence find A−1.


If  \[A = \begin{bmatrix}1 & - 1 \\ 2 & - 1\end{bmatrix} \text { and } B = \begin{bmatrix}a & 1 \\ b & - 1\end{bmatrix} \text { and } \left( A + B \right)^2 = A^2 + B^2\] , then find the values of a and b.


Matrix subtraction is associative


Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: a(C – A) = aC – aA


Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: (A – B)C = AC – BC 


Matrices of different orders can not be subtracted.


If A and B are two matrices of the same order, then A – B = B – A.


If A `= [(2,2,1),(1,3,1),(1,2,2)], "then"  "A"^4 - 2 ^4` (A - I) = ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×