हिंदी

Show that the Matrix A=`[[2 3],[1 2]]` Satisfies the Equation A3 − 4a2 + A = O - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the matrix  \[A = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\]satisfies the equation A3 − 4A2 + A = O

योग

उत्तर

\[\text{We have} , A = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\]
\[ \therefore A^2 = AA\]
\[ \Rightarrow A^2 = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\]
\[ \Rightarrow A^2 = \begin{bmatrix}4 + 3 & 6 + 6 \\ 2 + 2 & 3 + 4\end{bmatrix}\]
\[ \Rightarrow A^2 = \begin{bmatrix}7 & 12 \\ 4 & 7\end{bmatrix}\]
\[ \Rightarrow A^3 = A^2 A\]
\[ \Rightarrow A^3 = \begin{bmatrix}7 & 12 \\ 4 & 7\end{bmatrix}\begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\]
\[ \Rightarrow A^3 = \begin{bmatrix}14 + 12 & 21 + 24 \\ 8 + 7 & 12 + 14\end{bmatrix}\]
\[ \Rightarrow A^3 = \begin{bmatrix}26 & 45 \\ 15 & 26\end{bmatrix}\]
\[Now, A^3 - 4 A^2 + A\]
\[ \Rightarrow A^3 - 4 A^2 + A = \begin{bmatrix}26 & 45 \\ 15 & 26\end{bmatrix} - 4\begin{bmatrix}7 & 12 \\ 4 & 7\end{bmatrix} + \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\]
\[ \Rightarrow A^3 - 4 A^2 + A = \begin{bmatrix}26 & 45 \\ 15 & 26\end{bmatrix} - \begin{bmatrix}28 & 48 \\ 16 & 28\end{bmatrix} + \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\]
\[ \Rightarrow A^3 - 4 A^2 + A = \begin{bmatrix}26 - 28 + 2 & 45 - 48 + 3 \\ 15 - 16 + 1 & 26 - 28 + 2\end{bmatrix}\]
\[ \Rightarrow A^3 - 4 A^2 + A = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix} = 0\]
Hence proved .

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Algebra of Matrices - Exercise 5.3 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 5 Algebra of Matrices
Exercise 5.3 | Q 31 | पृष्ठ ४३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

if `[[9,-1,4],[-2,1,3]]=A+[[1,2,-1],[0,4,9]]`, then find the matrix A.

 

Given the matrices 

`A=[[2,1,1],[3,-1,0],[0,2,4]]` , `B=[[9,7,-1],[3,5,4],[2,1,6]]`  `and  C=[[2,-4,3],[1,-1,0],[9,4,5]]`

Verify that (A + B) + C = A + (B + C).

 

\[A = \begin{bmatrix}2 & 3 \\ - 1 & 0\end{bmatrix}\],show that A2 − 2A + 3I2 = O


If \[A^T = \begin{bmatrix}3 & 4 \\ - 1 & 2 \\ 0 & 1\end{bmatrix} and B = \begin{bmatrix}- 1 & 2 & 1 \\ 1 & 2 & 3\end{bmatrix}\] , find AT − BT.
 

 


If \[A = \begin{bmatrix}3 & - 4 \\ 1 & - 1\end{bmatrix}\] , show that A − AT is a skewsymmetric matrix.
 

 


If  `[x        2]  [[3],[4]] = 2` , find x


If \[\begin{bmatrix}x & x - y \\ 2x + y & 7\end{bmatrix} = \begin{bmatrix}3 & 1 \\ 8 & 7\end{bmatrix}\]  , then find the value of y.


If  \[\begin{bmatrix}9 & - 1 & 4 \\ - 2 & 1 & 3\end{bmatrix} = A + \begin{bmatrix}1 & 2 & - 1 \\ 0 & 4 & 9\end{bmatrix}\] , then find matrix A.


If  \[\begin{bmatrix}a - b & 2a + c \\ 2a - b & 3c + d\end{bmatrix} = \begin{bmatrix}- 1 & 5 \\ 0 & 13\end{bmatrix}\] , find the value of b.


If \[A = \begin{bmatrix}0 & 2 \\ 3 & - 4\end{bmatrix}\]  and \[kA = \begin{bmatrix}0 & 3a \\ 2b & 24\end{bmatrix}\]  then the values of kab, are respectively 


If \[A = \begin{bmatrix}2 & - 1 \\ - 1 & 2\end{bmatrix}\] and I is the identity matrix of order 2, then show that A2= 4 A − 3 I. Hence find A−1.


If  \[A = \begin{bmatrix}1 & - 1 \\ 2 & - 1\end{bmatrix} \text { and } B = \begin{bmatrix}a & 1 \\ b & - 1\end{bmatrix} \text { and } \left( A + B \right)^2 = A^2 + B^2\] , then find the values of a and b.


If A = `[(1, 2),(-2, 1)]`, B = `[(2, 3),(3, -4)]` and C = `[(1, 0),(-1, 0)]`, verify: (AB)C = A(BC)


If A = `[(1, 2),(4, 1),(5, 6)]` B = `[(1, 2),(6, 4),(7, 3)]`, then verify that: (A – B)′ = A′ – B′


Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: (A – B)C = AC – BC 


If A and B are two matrices of the same order, then A – B = B – A.


If A `= [(2,2,1),(1,3,1),(1,2,2)], "then"  "A"^4 - 2 ^4` (A - I) = ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×