Advertisements
Advertisements
प्रश्न
If a, b and c are in A.P. and also in G.P., show that : a = b = c.
उत्तर
a, b and c are in A.P.
`=>` 2b = a + c
`=> b = (a + c)/2`
a, b and c are also in G.P.
`=>` b2 = ac
`=> ((a + c)/2)^2 = ac`
`=> (a^2 + c^2 + 2ac)/4 = ac`
`=>` a2 + c2 + 2ac = 4ac
`=>` a2 + c2 – 2ac = 0
`=>` (a – c)2 = 0
`=>` a – c = 0
`=>` a = c
Now, 2b = a + c
`=>` 2b = a + a
`=>` 2b = 2a
`=>` b = a
Thus, we have a = b = c
APPEARS IN
संबंधित प्रश्न
Find, which of the following sequence from a G.P. :
`1/8, 1/24, 1/72, 1/216, ................`
Find the G.P. whose first term is 64 and next term is 32.
If the first and the third terms of a G.P. are 2 and 8 respectively, find its second term.
The fifth, eight and eleventh terms of a geometric progression are p, q and r respectively. Show that : q2 = pr.
Q 5
Find the sum of G.P. :
1 + 3 + 9 + 27 + .......... to 12 terms.
Find the sum of G.P. :
`1 - 1/3 + 1/3^2 - 1/3^3 + .........` to n terms.
Find the sum of G.P. :
`(x + y)/(x - y) + 1 + (x - y)/(x + y) + ..........` upto n terms.
How many terms of the geometric progression 1 + 4 + 16 + 64 + …….. must be added to get sum equal to 5461?
Find the sum of G.P. : 3, 6, 12, .........., 1536.