Advertisements
Advertisements
प्रश्न
If a, b, c are in G.P. and a, x, b, y, c are in A.P., prove that `a/x + c/y = 2`
उत्तर
a, b and c are in G.P.
`=>` b2 = ac
a, x, b, y and c are in A.P.
`=>` 2x = a + b `=> x = (a + b)/2`
2b = x + y `=> b = (x + y)/2`
2y = b + c `=> y = (b + c)/2`
Now,
`a/x + c/y = (2a)/(a + b) + (2c)/(b + c)`
= `(2a(b + c) + 2c(a + b))/((a + b)(b + c))`
= `(2ab + 2ac + 2ac + 2bc)/(ab + ac + b^2 + bc)`
= `(2ab + 4ac + 2bc)/(ab + b^2 + b^2 + bc)`
= `(2(ab + 2ac + bc))/(ab + 2b^2 + bc)`
= `(2(ab + 2ac + bc))/(ab + 2ac + bc)`
= 2
APPEARS IN
संबंधित प्रश्न
Find, which of the following sequence from a G.P. :
9, 12, 16, 24, ................
The product of 3rd and 8th terms of a G.P. is 243. If its 4th term is 3, find its 7th term.
Second term of a geometric progression is 6 and its fifth term is 9 times of its third term. Find the geometric progression. Consider that each term of the G.P. is positive.
If for a G.P., pth, qth and rth terms are a, b and c respectively; prove that : (q – r) log a + (r – p) log b + (p – q) log c = 0
If a, b and c are in G.P., prove that : log a, log b and log c are in A.P.
If a, b and c are in A.P, a, x, b are in G.P. whereas b, y and c are also in G.P.
Show that : x2, b2, y2 are in A.P.
Q 6
Find the geometric mean between 14 and `7/32`
The sum of three numbers in G.P. is `39/10` and their product is 1. Find the numbers.
Find the sum of the sequence `-1/3, 1, -3, 9, ..........` upto 8 terms.