Advertisements
Advertisements
Question
If a, b, c are in G.P. and a, x, b, y, c are in A.P., prove that `a/x + c/y = 2`
Solution
a, b and c are in G.P.
`=>` b2 = ac
a, x, b, y and c are in A.P.
`=>` 2x = a + b `=> x = (a + b)/2`
2b = x + y `=> b = (x + y)/2`
2y = b + c `=> y = (b + c)/2`
Now,
`a/x + c/y = (2a)/(a + b) + (2c)/(b + c)`
= `(2a(b + c) + 2c(a + b))/((a + b)(b + c))`
= `(2ab + 2ac + 2ac + 2bc)/(ab + ac + b^2 + bc)`
= `(2ab + 4ac + 2bc)/(ab + b^2 + b^2 + bc)`
= `(2(ab + 2ac + bc))/(ab + 2b^2 + bc)`
= `(2(ab + 2ac + bc))/(ab + 2ac + bc)`
= 2
APPEARS IN
RELATED QUESTIONS
Find the 9th term of the series :
1, 4, 16, 64, ...............
The product of 3rd and 8th terms of a G.P. is 243. If its 4th term is 3, find its 7th term.
The fourth term, the seventh term and the last term of a geometric progression are 10, 80 and 2560 respectively. Find its first term, common ratio and number of terms.
The fifth, eight and eleventh terms of a geometric progression are p, q and r respectively. Show that : q2 = pr.
If for a G.P., pth, qth and rth terms are a, b and c respectively; prove that : (q – r) log a + (r – p) log b + (p – q) log c = 0
Q 2
If a, b, c are in G.P. and a, x, b, y, c are in A.P., prove that `1/x + 1/y = 2/b`
Q 6
Find the sum of G.P. :
`1 - 1/2 + 1/4 - 1/8 + ..........` to 9 terms.
Q 8