Advertisements
Advertisements
Question
Find the sum of G.P. :
`1 - 1/2 + 1/4 - 1/8 + ..........` to 9 terms.
Solution
Given G.P. : `1 - 1/2 + 1/4 - 1/8 + ..........`
Here,
First term, a = 1
Common ratio, r = `(-1/2)/1 = -1/2` ...(∵ r < 1)
Number of terms to be added, n = 9
∴ `S_n = (a(1 - r^n))/(1 - r)`
`=> S_8 = (1(1 - (-1/2)^9))/(1 - (-1/2))`
= `(1 - (-1/2)^9)/(1 + 1/2)`
= `(1 + 1/2^9)/(3/2)`
= `2/3(1 + 1/2^9)`
= `2/3(1 + 1/512)`
= `2/3 xx 513/512`
= `171/256`
APPEARS IN
RELATED QUESTIONS
Find, which of the following sequence from a G.P. :
8, 24, 72, 216, .............
Find the 9th term of the series :
1, 4, 16, 64, ...............
Find the geometric progression with 4th term = 54 and 7th term = 1458.
The fifth, eight and eleventh terms of a geometric progression are p, q and r respectively. Show that : q2 = pr.
Find the seventh term from the end of the series :
`sqrt(2), 2, 2sqrt(2), ........., 32.`
Find the sum of G.P. :
0.3 + 0.03 + 0.003 + 0.0003 + ........... to 8 items.
Find the sum of G.P. :
`sqrt(3) + 1/sqrt(3) + 1/(3sqrt(3)) + ..........` to n terms.
Q 3.1
Q 3.2
Q 3.3