Advertisements
Advertisements
Question
The fourth term, the seventh term and the last term of a geometric progression are 10, 80 and 2560 respectively. Find its first term, common ratio and number of terms.
Solution
Let the first term of the G.P. be a and its common ratio be r.
4th term = t4 = 10 `=>` ar3 = 10
7th term = t7 = 80 `=>` ar6 = 80
`(ar^6)/(ar^3) = 80/10`
`=>` r3 = 8
`=>` r = 2
ar3 = 10
`=>` a × (2)3 = 10
`=> a = 10/8 = 5/4`
Last term = I = 2560
Let there be n term in given G.P.
`=>` tn = 2560
`=>` arn – 1 = 2560
`=> 5/4 xx (2)^(n - 1) = 2560`
`=>` (2)n – 1 = 2048
`=>` (2)n – 1 = (2)11
`=>` n – 1 = 11
`=>` n = 12
Thus, we have
First term = `5/4` common ratio = 2 and number of terms = 12
APPEARS IN
RELATED QUESTIONS
Find, which of the following sequence from a G.P. :
`1/8, 1/24, 1/72, 1/216, ................`
Find the 9th term of the series :
1, 4, 16, 64, ...............
Find the G.P. whose first term is 64 and next term is 32.
Find the seventh term from the end of the series :
`sqrt(2), 2, 2sqrt(2), ........., 32.`
Q 5
Q 6
Find the sum of G.P. :
`sqrt(3) + 1/sqrt(3) + 1/(3sqrt(3)) + ..........` to n terms.
Find the geometric mean between 2a and 8a3
Q 3.1
Q 7