Advertisements
Advertisements
प्रश्न
If a + b + c = 0, then write the value of a3 + b3 + c3.
उत्तर
Recall the formula
` a^3 + b^3 +c^3 - 3abc = (a+b+c)(a^2 +b^2 +c^2 -ab-bc - ca)`
When (a + b + c) = 0, we have
`a^3 +b^3 +c^3 -3abc = (a^2 +b^2 +c^2 - ab - bc - ca)`
= 0
`a^3 +b^3 +c^3 - 3abc - 0`
⇒ `a^3 +b^3 +c^3 = 3abc`
APPEARS IN
संबंधित प्रश्न
Factorize a2 - b2 + 2bc - c2
Write the value of \[\left( \frac{1}{2} \right)^3 + \left( \frac{1}{3} \right)^3 - \left( \frac{5}{6} \right)^3 .\]
The factors of x3 − 1 + y3 + 3xy are
(x + y)3 − (x − y)3 can be factorized as
Multiply: (6x - 2y)(3x - y)
Divide: - 50 + 40p by 10p
Divide: 10x3y - 9xy2 - 4x2y2 by xy
Express the following as an algebraic expression:
The product of 12, x, y and z minus the product of 5, m and n.
Write the coefficient of x2 and x in the following polynomials
`sqrt(3)x^2 + sqrt(2)x + 0.5`
3p2 – 5pq + 2q2 + 6pq – q2 + pq is a