हिंदी

If a, b, c, d are in continued proportion, prove that: a3+b3+c3b3+c3+d3=ad - Mathematics

Advertisements
Advertisements

प्रश्न

If a, b, c, d are in continued proportion, prove that: `(a^3 + b^3 + c^3)/(b^3 + c^3 + d^3) = a/d`

योग

उत्तर

a, b, c, d are in continued proportion

∴ `a/b = b/c = c/d` = k(say)

∴ c = dk, b = ck = dk, k = dk2

a = bk = dk2. k = dk3 

L.H.S. = `(a^3 + b^3 + c^3)/(b^3 + c^3 + d^3)`

= `((dk^3)^3 + (dk^2)^3 + (dk)^3)/((dk^2)^3 + (dk)^3 + d^3)`

= `(d^3k^9 + d^3k^6 + d^3k^3)/(d^3k^6 + d^3k^3 + d^3)`

= `(d^3k^3(k^6 + k^3 + 1))/(d^3(k^6 + k^3 + 1)`

= k3

R.H.S. = `a/d`

= `(dk^3)/d`

= k3

∴ L.H.S. = R.H.S.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Ratio and Proportion - Exercise 7.2

APPEARS IN

एमएल अग्रवाल Understanding ICSE Mathematics [English] Class 10
अध्याय 7 Ratio and Proportion
Exercise 7.2 | Q 23.1
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×