Advertisements
Advertisements
प्रश्न
If a, b, c and dare in continued proportion, then prove that
`sqrt (("a + b + c")("b + c + d")) = sqrt "ab" + sqrt "bc" + sqrt "cd"`
उत्तर
`"a"/"b" = "b"/"c" = "c"/"d" = "k"`
⇒ c = kd
b =kc= k2d
a= kb= k3d
`sqrt (("a + b + c")("b + c + d")) = sqrt "ab" + sqrt "bc" + sqrt "cd"`
LHS
`sqrt (("a + b + c")("b + c + d"))`
`= sqrt (("k"^3"d" + "k"^2"d" + "kd")("k"^2"d" + "kd" + "d"))`
`= sqrt ("kd" ("k"^2 + "k" + 1) xx "d"("k"^2 + "k" + 1))`
`= sqrt ("kd"^2 ("k"^2 + "k" + 1)^2)`
`= "d" sqrt "k" ("k"^2 + "k" + 1)`
RHS
= `sqrt "ab" + sqrt "bc" + sqrt "cd"`
= `sqrt ("k"^3"d" xx "k"^2"d") + sqrt ("k"^2"d" xx "kd") + sqrt ("kd" xx "d")`
=`sqrt ("k"^5"d"^2) + sqrt ("k"^3"d"^2) + sqrt "k" "d"^2`
= `"k"^2"d" sqrt "k" + "kd" sqrt "k" + "d" sqrt "k"`
= `"d" sqrt "k" ("k"^2 + "k" + 1)`
APPEARS IN
संबंधित प्रश्न
If y is the mean proportional between x and z, prove that: `(x^2 - y^2 + z^2)/(x^(-2) - y^(-2) + z^(-2)) = y^4`.
If a, b, c and d are in proportion prove that `sqrt((4a^2 + 9b^2)/(4c^2 + 9d^2)) = ((xa^3 - 4yb^3)/(xc^3 - 5yd^3))^(1/3)`
If x, y, z are in continued proportion prove that `(x + y)^2/(y + z)^2 = x/z`
If p, q and r in continued proportion, then prove the following :
`"p"^2 - "q"^2 + "r"^2 = "q"^4 (1/"p"^2 - 1/"q"^2 - 1/"r"^2)`
Find the fourth proportional to 9.6 kg, 7.2 kg, 28.8 kg
Write (T) for true and (F) for false in case of the following:
45 km : 60 km : : 12 h : 15 h
Show that the following numbers are in continued proportion:
48, 60, 75
If 40 men can finish a piece of work in 26 days, how many men will be required to finish it in 20 days?
If `x/a = y/b = z/c`, prove that `x^3/a^2 + y^3/b^2 + z^3/c^2 = (x+ y+ z)^3/(a + b+ c)^2`
The America’s famous Golden Gate bridge is 6480 ft long with 756 ft tall towers. A model of this bridge exhibited in a fair is 60 ft long with 7 ft tall towers. Is the model, in proportion to the original bridge?