हिंदी

If A + I = [12054207-3], find the product (A + I)(A − I). - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If A + I = `[(1, 2, 0),(5, 4, 2),(0, 7, -3)]`, find the product (A + I)(A − I).

योग

उत्तर

A + I = `[(1, 2, 0),(5, 4, 2),(0, 7, -3)]`          ...(1)

A = `[(1, 2, 0),(5, 4, 2),(0, 7, -3)]-"I"`

= `[(1, 2, 0),(5, 4, 2),(0, 7, -3)]-[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`

= `[(0, 2, 0),(5, 3, 2),(0, 7, -4)]`

(A + I)(A − I) = `[(1, 2, 0),(5, 4, 2),(0, 7, -3)]xx[(0, 2, 0),(5, 3, 2),(0, 7, -4)]-[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`

= `[(1, 2, 0),(5, 4, 2),(0, 7, -3)][(1, 2, 0),(5, 2, 2),(0, 7, -5)]`

= `[(-1 + 10 + 0, 2 + 4 + 0, 0 + 4 + 0),(-5 + 20 + 0 , 10 + 8 + 14, 0 + 8 - 10),(0 + 35 + 0, 0 + 14 - 21, 0 + 14 + 15)]`

 `[(9, 6, 4),(15, 32, -2),(35,-7,29)]`

shaalaa.com
Properties of Matrices
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Matrices - Exercise 2.3 [पृष्ठ ५६]

APPEARS IN

संबंधित प्रश्न

Evaluate : `[2 - 1   3][(4),(3),(1)]`


If  A = `[(4, 3, 2),(-1, 2, 0)],"B" = [(1, 2),(-1, 0),(1, -2)]` show that matrix AB is non singular.


If A = `[(1, 2, 2),(2, 1, 2),(2, 2, 1)]`, show that A2 – 4A is a scalar matrix.


Find k, if A = `[(3, -2),(4, -2)]` and A2 = kA – 2I.


Find x, y, x, if `{3[(2, 0),(0, 2),(2, 2)] -4[(1, 1),(-1, 2),(3, 1)]} [(1),(2)] = [(x - 3),(y - 1),(2z)]`.


Jay and Ram are two friends. Jay wants to buy 4 pens and 8 notebooks, Ram wants to buy 5 pens and 12 notebooks. The price of one pen and one notebook was ₹ 6 and ₹ 10 respectively. Using matrix multiplication, find the amount each one of them requires for buying the pens and notebooks.


Solve the following :

If A = `[(2, 5),(3, 7)], "B" = 4[(1, 7),(-3, 0)]`, find matrix A – 4B + 7I, where I is the unit matrix of order 2.


Solve the following :

If A = `[(2, -3),(3, -2),(-1, 4)],"B" = [(-3, 4, 1),(2, -1, -3)]`, verify (A + 2BT)T = AT + 2B.


Solve the following :

If A = `[(1, 2, 3),(2, 4, 6),(1, 2, 3)],"B" = [(1, -1, 1),(-3, 2, -1),(-2, 1, 0)]`, then show that AB and BA are bothh singular martices.


Solve the following :

If A = `[(3, 1),(1, 5)], "B" = [(1, 2),(5, -2)]`, verify |AB| = |A| |B|.


State whether the following statement is True or False:

If A = `[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`, then AT = A


If A = `[(4, 3, 2),(-1, 2, 0)]`, B = `[(1, 2),(-1, 0),(1, -2)]`, then |AB| = ______


If matrix form of given equations 3x – y = 1 and y + 4x = 6 is AX = B, then A = ______


If A = `[(3, 1),(1, 5)]` and B = `[(1, 2),(5, -2)]`, then verify |AB| = |A||B|


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×