Advertisements
Advertisements
Question
If A + I = `[(1, 2, 0),(5, 4, 2),(0, 7, -3)]`, find the product (A + I)(A − I).
Solution
A + I = `[(1, 2, 0),(5, 4, 2),(0, 7, -3)]` ...(1)
A = `[(1, 2, 0),(5, 4, 2),(0, 7, -3)]-"I"`
= `[(1, 2, 0),(5, 4, 2),(0, 7, -3)]-[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
= `[(0, 2, 0),(5, 3, 2),(0, 7, -4)]`
(A + I)(A − I) = `[(1, 2, 0),(5, 4, 2),(0, 7, -3)]xx[(0, 2, 0),(5, 3, 2),(0, 7, -4)]-[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
= `[(1, 2, 0),(5, 4, 2),(0, 7, -3)][(1, 2, 0),(5, 2, 2),(0, 7, -5)]`
= `[(-1 + 10 + 0, 2 + 4 + 0, 0 + 4 + 0),(-5 + 20 + 0 , 10 + 8 + 14, 0 + 8 - 10),(0 + 35 + 0, 0 + 14 - 21, 0 + 14 + 15)]`
`[(9, 6, 4),(15, 32, -2),(35,-7,29)]`
APPEARS IN
RELATED QUESTIONS
Evaluate : `[2 - 1 3][(4),(3),(1)]`
Show that AB = BA, where A = `[(-2, 3, -1),(-1, 2, -1),(-6, 9, -4)],"B" = [(1, 3, -1),(2, 2, -1),(3, 0, -1)]`.
If A = `[(1, 2, 2),(2, 1, 2),(2, 2, 1)]`, show that A2 – 4A is a scalar matrix.
If A = `[(1, 0),(-1, 7)]`, find k, so that A2 – 8A – kI = O, where I is a 2 × 2 unit and O is null matrix of order 2.
If A = `[(3, 1),(-1, 2)]`, prove that A2 – 5A + 7I = 0, where I is a 2 x 2 unit matrix.
Find k, if A = `[(3, -2),(4, -2)]` and A2 = kA – 2I.
Find x, y, x, if `{3[(2, 0),(0, 2),(2, 2)] -4[(1, 1),(-1, 2),(3, 1)]} [(1),(2)] = [(x - 3),(y - 1),(2z)]`.
Choose the correct alternative.
If A and B are square matrices of order n × n such that A2 – B2 = (A – B)(A + B), then which of the following will be always true?
Solve the following :
If A = `[(2, 5),(3, 7)], "B" = 4[(1, 7),(-3, 0)]`, find matrix A – 4B + 7I, where I is the unit matrix of order 2.
Solve the following :
If A = `[(1, 5),(7, 8),(9, 5)], "B" = [(2, 4),(1, 5),(-8, 6)] "C" = [(-2, 3),(1, -5),(7, 8)]` then show that (A + B) + C = A + (B + C).
Solve the following :
If A = `[(1, 2, 3),(2, 4, 6),(1, 2, 3)],"B" = [(1, -1, 1),(-3, 2, -1),(-2, 1, 0)]`, then show that AB and BA are bothh singular martices.
Solve the following :
If A = `[(2, -1),(-1, 2)]`, then show that A2 – 4A + 3I = 0.
Solve the following :
If A = `[(-3, 2),(2, 4)], "B" = [(1, "a"), ("b", 0)]` and (A + B) (A – B) = A2 – B2, find a and b.
Solve the following :
If A = `[(2, -4),(3, -2),(0, 1)], "B" = [(1, -1, 2),(-2, 1, 0)]`, then show that (AB)T = BTAT.
State whether the following statement is True or False:
If A = `[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`, then AT = A
If A = `[(1, -2),(5, 3)]`, B = `[(1, -3),(4, -7)]`, then A – 3B = ______
If matrix form of given equations 3x – y = 1 and y + 4x = 6 is AX = B, then A = ______
If A = `[(3, 1),(1, 5)]` and B = `[(1, 2),(5, -2)]`, then verify |AB| = |A||B|