English

If A = [31-12], prove that A2 – 5A + 7I = 0, where I is a 2 x 2 unit matrix. - Mathematics and Statistics

Advertisements
Advertisements

Question

If A = `[(3, 1),(-1, 2)]`, prove that A2 – 5A + 7I = 0, where I is a 2 x 2 unit matrix.

Sum

Solution

A2 – 5A + 7I = A.A – 5A + 7I 

= `[(3, 1),(-1, 2)][(3, 1),(-1, 2)] 5[(3, 1),(-1, 2)] + 7[(1, 0),(0, 1)]`

= `[(9 - 1, 3 + 2),(-3 - 2, -1 + 4)]  [(15, 5),(-5, 10)] + [(7, 0),(0, 7)]`

= `[(8, 5),(-5, 3)] - [(15, 5),(-5, 10)] + [(7, 0),(0, 7)]`

= `[(8 - 15 + 7, 5 - 5 + 0),(-5 + 5 + 0, 3 - 10 + 7)]`

= `[(0, 0),(0, 0)]`

= 0.

shaalaa.com
Properties of Matrices
  Is there an error in this question or solution?
Chapter 2: Matrices - Exercise 2.3 [Page 56]

RELATED QUESTIONS

Evaluate : `[(3),(2),(1)][2  -4   3]`


Evaluate : `[2 - 1   3][(4),(3),(1)]`


Show that AB = BA, where A = `[(-2, 3, -1),(-1, 2, -1),(-6, 9, -4)],"B" = [(1, 3, -1),(2, 2, -1),(3, 0, -1)]`.


Verify A(BC) = (AB)C, if A = `[(1, 0, 1),(2, 3, 0),(0, 4, 5)], "B" = [(2, -2),(-1, 1),(0, 3)] and "C" = [(3,2,-1), (2,0,-2)]`


If  A = `[(4, 3, 2),(-1, 2, 0)],"B" = [(1, 2),(-1, 0),(1, -2)]` show that matrix AB is non singular.


If A + I = `[(1, 2, 0),(5, 4, 2),(0, 7, -3)]`, find the product (A + I)(A − I).


Find k, if A = `[(3, -2),(4, -2)]` and A2 = kA – 2I.


Find x and y, if `{4[(2, -1, 3),(1, 0, 2)] - [(3, -3, 4),(2, 1, 1)]}[(2),(-1),(1)] = [(x),(y)]`


Choose the correct alternative.

If A and B are square matrices of order n × n such that A2 – B2 = (A – B)(A + B), then which of the following will be always true?


Solve the following :

If A = `[(2, 5),(3, 7)], "B" = 4[(1, 7),(-3, 0)]`, find matrix A – 4B + 7I, where I is the unit matrix of order 2.


Solve the following :

If A = `[(2, -3),(3, -2),(-1, 4)],"B" = [(-3, 4, 1),(2, -1, -3)]`, verify (A + 2BT)T = AT + 2B.


Solve the following :

If A = `[(1, 2, 3),(2, 4, 6),(1, 2, 3)],"B" = [(1, -1, 1),(-3, 2, -1),(-2, 1, 0)]`, then show that AB and BA are bothh singular martices.


Solve the following :

If A = `[(3, 1),(1, 5)], "B" = [(1, 2),(5, -2)]`, verify |AB| = |A| |B|.


Solve the following :

If A = `[(-3, 2),(2, 4)], "B" = [(1, "a"), ("b", 0)]` and (A + B) (A – B) = A2 – B2, find a and b.


State whether the following statement is True or False:

If A = `[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`, then AT = A


If A = `[(1, -2),(5, 3)]`, B = `[(1, -3),(4, -7)]`, then A – 3B = ______


If matrix form of given equations 3x – y = 1 and y + 4x = 6 is AX = B, then A = ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×