English

If A = [10-17], find k so that A2 – 8A – kI = O, where I is a 2 × 2 unit and O is null matrix of order 2. - Mathematics and Statistics

Advertisements
Advertisements

Question

If A = `[(1, 0),(-1, 7)]`, find k, so that A2 – 8A – kI = O, where I is a 2 × 2 unit and O is null matrix of order 2.

Sum

Solution

A2 – 8A – kI = O                    ...(Given)

`"I" = [(1, 0),(0, 1)], "O" = [(0, 0),(0, 0)], "and  A" = [(1, 0),(-1, 7)]`

A= A.A
= `[(1, 0),(-1, 7)].[(1, 0),(-1, 7)]`

= `[(1 + 0, 0 + 0), (– 1  –  7, 0  + 49)]`

= `[(1, 0),(-8, 49)]`

∴ A2 – 8A – kI = O   

∴ `[(1, 0),(–8, 49)] –  8[(1, 0),(–1, 7)] –  "k"[(1, 0),(0, 1)] = [(0, 0),(0, 0)]`

∴ `[(1, 0),(–8, 49)] – [(8, 0),(–8, 56)] – [("k", 0),(0, "k")] = [(0, 0),(0, 0)]`

∴ `[(1  –  8  –  "k",0  –  0  –  0),(– 8 + 8  –  0, 49  –  56  –  "k")] = [(0, 0),(0, 0)]`

∴ Using definition of equality of matrices, we have,

∴ 1  –  8  – k = 0

∴ – 7 – k = 0

∴ k = – 7

shaalaa.com
Properties of Matrices
  Is there an error in this question or solution?
Chapter 2: Matrices - Exercise 2.3 [Page 56]

RELATED QUESTIONS

If A = `[(-1, 1, 1),(2, 3, 0),(1, -3, 1)],"B" = [(2, 1, 4),(3, 0, 2),(1, 2, 1)]`, state whether AB = BA? Justify your answer.


Show that AB = BA, where A = `[(-2, 3, -1),(-1, 2, -1),(-6, 9, -4)],"B" = [(1, 3, -1),(2, 2, -1),(3, 0, -1)]`.


Verify A(BC) = (AB)C, if A = `[(1, 0, 1),(2, 3, 0),(0, 4, 5)], "B" = [(2, -2),(-1, 1),(0, 3)] and "C" = [(3,2,-1), (2,0,-2)]`


Verify that A(B + C) = AB + AC, if A = `[(4, -2),(2, 3)], "B" = [(-1, 1),(3, -2)] " and C" = [(4 ,1),(2, -1)]`.


If A + I = `[(1, 2, 0),(5, 4, 2),(0, 7, -3)]`, find the product (A + I)(A − I).


If A = `[(1, 2, 2),(2, 1, 2),(2, 2, 1)]`, show that A2 – 4A is a scalar matrix.


Find k, if A = `[(3, -2),(4, -2)]` and A2 = kA – 2I.


Find x and y, if `{4[(2, -1, 3),(1, 0, 2)] - [(3, -3, 4),(2, 1, 1)]}[(2),(-1),(1)] = [(x),(y)]`


Jay and Ram are two friends. Jay wants to buy 4 pens and 8 notebooks, Ram wants to buy 5 pens and 12 notebooks. The price of one pen and one notebook was ₹ 6 and ₹ 10 respectively. Using matrix multiplication, find the amount each one of them requires for buying the pens and notebooks.


Choose the correct alternative.

If A and B are square matrices of order n × n such that A2 – B2 = (A – B)(A + B), then which of the following will be always true?


Solve the following :

If A = `[(2, 5),(3, 7)], "B" = 4[(1, 7),(-3, 0)]`, find matrix A – 4B + 7I, where I is the unit matrix of order 2.


Solve the following :

If A = `[(2, -3),(3, -2),(-1, 4)],"B" = [(-3, 4, 1),(2, -1, -3)]`, verify (A + 2BT)T = AT + 2B.


Solve the following :

If A = `[(1, 2, 3),(2, 4, 6),(1, 2, 3)],"B" = [(1, -1, 1),(-3, 2, -1),(-2, 1, 0)]`, then show that AB and BA are bothh singular martices.


Solve the following :

If A = `[(2, -4),(3, -2),(0, 1)], "B" = [(1, -1, 2),(-2, 1, 0)]`, then show that (AB)T = BTAT.


State whether the following statement is True or False:

If A = `[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`, then AT = A


If A = `[(2, 1),(0, 3),(1, -1)]` and B = `[(0, 3, 5),(1, -7, 2)]`, then verify (BA)T = ATBT


If A = `[(3, 1),(1, 5)]` and B = `[(1, 2),(5, -2)]`, then verify |AB| = |A||B|


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×