Advertisements
Advertisements
Question
Solve the following :
If A = `[(2, -4),(3, -2),(0, 1)], "B" = [(1, -1, 2),(-2, 1, 0)]`, then show that (AB)T = BTAT.
Solution
AB = `[(2, -4),(3, -2),(0, 1)] [(1, -1, 2),(-2, 1, 0)]`
= `[(2 + 8, -2 - 4, 4 + 0),(3 + 4, -3 - 2, 6 - 0),(0 - 2, 0 + 1, 0 + 0)]`
= `[(10, -6, 4),(7, -5, 6),(-2, 1, 0)]`
∴ (AB)T = `[(10, 7, -2),(-6, -5, 1),(4, 6, 0)]` ...(i)
Now,AT = `[(2, 3, 0),(-4, -2, 1)] "and B"^"T" = [(1, -2),(-1, 1),(2, 0)]`
∴ BTAT = `[(1, -2),(-1, 1),(2, 0)] [(2, 3, 0),(-4, -2, 1)]`
= `[(2 + 8, 3 + 4, 0 - 2),(-2 - 4, -3 - 2, 0 + 1),(4 - 0, 6 - 0, 0 + 0)]`
∴ BTAT = `[(10, 7, -2),(-6, -5, 1),(4, 6, 0)]` ...(ii)
From (i) and (ii), we get
(AB)T = BTAT.
APPEARS IN
RELATED QUESTIONS
Evaluate : `[(3),(2),(1)][2 -4 3]`
Evaluate : `[2 - 1 3][(4),(3),(1)]`
Verify A(BC) = (AB)C, if A = `[(1, 0, 1),(2, 3, 0),(0, 4, 5)], "B" = [(2, -2),(-1, 1),(0, 3)] and "C" = [(3,2,-1), (2,0,-2)]`
If A + I = `[(1, 2, 0),(5, 4, 2),(0, 7, -3)]`, find the product (A + I)(A − I).
If A = `[(1, 2, 2),(2, 1, 2),(2, 2, 1)]`, show that A2 – 4A is a scalar matrix.
If A = `[(1, 0),(-1, 7)]`, find k, so that A2 – 8A – kI = O, where I is a 2 × 2 unit and O is null matrix of order 2.
If A = `[(3, 1),(-1, 2)]`, prove that A2 – 5A + 7I = 0, where I is a 2 x 2 unit matrix.
Find k, if A = `[(3, -2),(4, -2)]` and A2 = kA – 2I.
Find x, y, x, if `{3[(2, 0),(0, 2),(2, 2)] -4[(1, 1),(-1, 2),(3, 1)]} [(1),(2)] = [(x - 3),(y - 1),(2z)]`.
Solve the following :
If A = `[(2, 5),(3, 7)], "B" = 4[(1, 7),(-3, 0)]`, find matrix A – 4B + 7I, where I is the unit matrix of order 2.
Solve the following :
If A = `[(1, 5),(7, 8),(9, 5)], "B" = [(2, 4),(1, 5),(-8, 6)] "C" = [(-2, 3),(1, -5),(7, 8)]` then show that (A + B) + C = A + (B + C).
Solve the following :
If A = `[(2, -3),(3, -2),(-1, 4)],"B" = [(-3, 4, 1),(2, -1, -3)]`, verify (A + 2BT)T = AT + 2B.
Solve the following :
If A = `[(1, 2, 3),(2, 4, 6),(1, 2, 3)],"B" = [(1, -1, 1),(-3, 2, -1),(-2, 1, 0)]`, then show that AB and BA are bothh singular martices.
Solve the following :
If A = `[(3, 1),(1, 5)], "B" = [(1, 2),(5, -2)]`, verify |AB| = |A| |B|.
State whether the following statement is True or False:
If A = `[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`, then AT = A
If A = `[(4, 3, 2),(-1, 2, 0)]`, B = `[(1, 2),(-1, 0),(1, -2)]`, then |AB| = ______
If A = `[(3, 1),(1, 5)]` and B = `[(1, 2),(5, -2)]`, then verify |AB| = |A||B|