Advertisements
Advertisements
Question
Solve the following :
If A = `[(2, -3),(3, -2),(-1, 4)],"B" = [(-3, 4, 1),(2, -1, -3)]`, verify (A + 2BT)T = AT + 2B.
Solution
A = `[(2, -3),(3, -2),(-1, 4)] "and B" = [(-3, 4, 1),(2, -1, -3)]`
∴ AT = `[(2, 3, -1),(-3, -2, 4)] "and B"^"T" = [(-3, 2),(4, -1),(1, -3)]`
∴ A + 2BT = `[(2, -3),(3, -2),(-1, 4)] + 2[(-3, 2),(4, -1),(1, -3)]`
= `[(2, -3),(3, -2),(-1, 4)] + [(-6, 4),(8, -2),(2, -6)]`
= `[(2 - 6, -3 + 4),(3 + 8 , -2 - 2),(-1 - 2, 4 - 6)]`
∴ A + 2BT = `[(-4, 1),(11, -4),(1, -2)]`
∴ *A + 2BT)T = `[(-4, 11, 1),(1, -4, -2)]` ...(i)
A + 2B = `[(2, 3, -1),(-3, -2, 4)] + 2[(-3, 4, 1),(2, -1, -3)]`
= `[(2, 3, -1),(-3, -2, 4)] + [(-6, 8, 2),(4, -2, -6)]`
= `[(-4, 11, 1),(1, -4, -2)]` ...(iii)
From (i) and (ii), we get
(A + 2BT)T = AT + 2B.
APPEARS IN
RELATED QUESTIONS
Evaluate : `[(3),(2),(1)][2 -4 3]`
If A = `[(-1, 1, 1),(2, 3, 0),(1, -3, 1)],"B" = [(2, 1, 4),(3, 0, 2),(1, 2, 1)]`, state whether AB = BA? Justify your answer.
Show that AB = BA, where A = `[(-2, 3, -1),(-1, 2, -1),(-6, 9, -4)],"B" = [(1, 3, -1),(2, 2, -1),(3, 0, -1)]`.
If A = `[(4, 3, 2),(-1, 2, 0)],"B" = [(1, 2),(-1, 0),(1, -2)]` show that matrix AB is non singular.
If A + I = `[(1, 2, 0),(5, 4, 2),(0, 7, -3)]`, find the product (A + I)(A − I).
If A = `[(1, 0),(-1, 7)]`, find k, so that A2 – 8A – kI = O, where I is a 2 × 2 unit and O is null matrix of order 2.
If A = `[(3, 1),(-1, 2)]`, prove that A2 – 5A + 7I = 0, where I is a 2 x 2 unit matrix.
Find k, if A = `[(3, -2),(4, -2)]` and A2 = kA – 2I.
Find x and y, if `{4[(2, -1, 3),(1, 0, 2)] - [(3, -3, 4),(2, 1, 1)]}[(2),(-1),(1)] = [(x),(y)]`
Find x, y, x, if `{3[(2, 0),(0, 2),(2, 2)] -4[(1, 1),(-1, 2),(3, 1)]} [(1),(2)] = [(x - 3),(y - 1),(2z)]`.
Choose the correct alternative.
If A and B are square matrices of order n × n such that A2 – B2 = (A – B)(A + B), then which of the following will be always true?
Solve the following :
If A = `[(1, 5),(7, 8),(9, 5)], "B" = [(2, 4),(1, 5),(-8, 6)] "C" = [(-2, 3),(1, -5),(7, 8)]` then show that (A + B) + C = A + (B + C).
Solve the following :
If A = `[(2, -1),(-1, 2)]`, then show that A2 – 4A + 3I = 0.
Solve the following :
If A = `[(-3, 2),(2, 4)], "B" = [(1, "a"), ("b", 0)]` and (A + B) (A – B) = A2 – B2, find a and b.
Solve the following :
If A = `[(2, -4),(3, -2),(0, 1)], "B" = [(1, -1, 2),(-2, 1, 0)]`, then show that (AB)T = BTAT.
If A = `[(1, -2),(5, 3)]`, B = `[(1, -3),(4, -7)]`, then A – 3B = ______
If A = `[(3, 1),(1, 5)]` and B = `[(1, 2),(5, -2)]`, then verify |AB| = |A||B|