English

Solve the following : If A = [2-33-2-14],B=[-3412-1-3], verify (A + 2BT)T = AT + 2B. - Mathematics and Statistics

Advertisements
Advertisements

Question

Solve the following :

If A = `[(2, -3),(3, -2),(-1, 4)],"B" = [(-3, 4, 1),(2, -1, -3)]`, verify (A + 2BT)T = AT + 2B.

Sum

Solution

A = `[(2, -3),(3, -2),(-1, 4)] "and B" = [(-3, 4, 1),(2, -1, -3)]`

∴ AT = `[(2, 3, -1),(-3, -2, 4)] "and B"^"T" = [(-3, 2),(4, -1),(1, -3)]`

∴ A + 2BT = `[(2, -3),(3, -2),(-1, 4)] + 2[(-3, 2),(4, -1),(1, -3)]`

= `[(2, -3),(3, -2),(-1, 4)] + [(-6, 4),(8, -2),(2, -6)]`

= `[(2 - 6, -3 + 4),(3 + 8 , -2 - 2),(-1 - 2, 4 - 6)]`

∴ A + 2BT = `[(-4, 1),(11, -4),(1, -2)]`

∴ *A + 2BT)T = `[(-4, 11, 1),(1, -4, -2)]`     ...(i)

A + 2B = `[(2, 3, -1),(-3, -2, 4)] + 2[(-3, 4, 1),(2, -1, -3)]`

= `[(2, 3, -1),(-3, -2, 4)] + [(-6, 8, 2),(4, -2, -6)]`

= `[(-4, 11, 1),(1, -4, -2)]`      ...(iii)
From (i) and (ii), we get
(A + 2BT)T = AT + 2B.

shaalaa.com
Properties of Matrices
  Is there an error in this question or solution?
Chapter 2: Matrices - Miscellaneous Exercise 2 [Page 84]

APPEARS IN

RELATED QUESTIONS

Evaluate : `[(3),(2),(1)][2  -4   3]`


If A = `[(-1, 1, 1),(2, 3, 0),(1, -3, 1)],"B" = [(2, 1, 4),(3, 0, 2),(1, 2, 1)]`, state whether AB = BA? Justify your answer.


Show that AB = BA, where A = `[(-2, 3, -1),(-1, 2, -1),(-6, 9, -4)],"B" = [(1, 3, -1),(2, 2, -1),(3, 0, -1)]`.


If  A = `[(4, 3, 2),(-1, 2, 0)],"B" = [(1, 2),(-1, 0),(1, -2)]` show that matrix AB is non singular.


If A + I = `[(1, 2, 0),(5, 4, 2),(0, 7, -3)]`, find the product (A + I)(A − I).


If A = `[(1, 0),(-1, 7)]`, find k, so that A2 – 8A – kI = O, where I is a 2 × 2 unit and O is null matrix of order 2.


If A = `[(3, 1),(-1, 2)]`, prove that A2 – 5A + 7I = 0, where I is a 2 x 2 unit matrix.


Find k, if A = `[(3, -2),(4, -2)]` and A2 = kA – 2I.


Find x and y, if `{4[(2, -1, 3),(1, 0, 2)] - [(3, -3, 4),(2, 1, 1)]}[(2),(-1),(1)] = [(x),(y)]`


Find x, y, x, if `{3[(2, 0),(0, 2),(2, 2)] -4[(1, 1),(-1, 2),(3, 1)]} [(1),(2)] = [(x - 3),(y - 1),(2z)]`.


Choose the correct alternative.

If A and B are square matrices of order n × n such that A2 – B2 = (A – B)(A + B), then which of the following will be always true?


Solve the following :

If A = `[(1, 5),(7, 8),(9, 5)], "B" = [(2, 4),(1, 5),(-8, 6)] "C" = [(-2, 3),(1, -5),(7, 8)]` then show that (A + B) + C = A + (B + C).


Solve the following :

If A = `[(2, -1),(-1, 2)]`, then show that A2 – 4A + 3I = 0.


Solve the following :

If A = `[(-3, 2),(2, 4)], "B" = [(1, "a"), ("b", 0)]` and (A + B) (A – B) = A2 – B2, find a and b.


Solve the following :

If A = `[(2, -4),(3, -2),(0, 1)], "B" = [(1, -1, 2),(-2, 1, 0)]`, then show that (AB)T = BTAT.


If A = `[(1, -2),(5, 3)]`, B = `[(1, -3),(4, -7)]`, then A – 3B = ______


If A = `[(3, 1),(1, 5)]` and B = `[(1, 2),(5, -2)]`, then verify |AB| = |A||B|


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×