Advertisements
Advertisements
Question
If A = `[(-1, 1, 1),(2, 3, 0),(1, -3, 1)],"B" = [(2, 1, 4),(3, 0, 2),(1, 2, 1)]`, state whether AB = BA? Justify your answer.
Solution
AB = `[(-1, 1, 1),(2, 3, 0),(1, -3, 1)] [(2, 1, 4),(3, 0, 2),(1, 2, 1)]`
= `[(-2+ 3 + 1, -1 + 0 + 2, -4 + 2 + 1),(4 + 9 + 0, 2 + 0 + 0, 8 + 6 + 0),(2 - 9 + 1, 1 + 0 + 2, 4 - 6 + 1)]`
∴ AB = `[(2, 1, -1),(13, 2, 14),(-6, 3, -1)]` ...(i)
BA = `[(2, 1, 4),(3, 0, 2),(1, 2, 1)][(-1, 1, 1),(2, 3, 0),(1, -3, 1)]`
= `[(-2 + 2 + 4, 2 + 3 - 12, 2 + 0 + 4),(-3 + 0 + 2, 3 + 0 - 6, 3 + 0 + 2),(-1 + 4 + 1, 1 + 6 - 3, 1 + 0 + 1)]`
∴ BA = `[(4, -7, 6),(-1, -3, 5),(4, 4, 2)]` ...(ii)
From (i) and (ii), we get
AB ≠ BA.
APPEARS IN
RELATED QUESTIONS
Verify A(BC) = (AB)C, if A = `[(1, 0, 1),(2, 3, 0),(0, 4, 5)], "B" = [(2, -2),(-1, 1),(0, 3)] and "C" = [(3,2,-1), (2,0,-2)]`
If A = `[(4, 3, 2),(-1, 2, 0)],"B" = [(1, 2),(-1, 0),(1, -2)]` show that matrix AB is non singular.
If A + I = `[(1, 2, 0),(5, 4, 2),(0, 7, -3)]`, find the product (A + I)(A − I).
If A = `[(1, 2, 2),(2, 1, 2),(2, 2, 1)]`, show that A2 – 4A is a scalar matrix.
If A = `[(1, 0),(-1, 7)]`, find k, so that A2 – 8A – kI = O, where I is a 2 × 2 unit and O is null matrix of order 2.
If A = `[(3, 1),(-1, 2)]`, prove that A2 – 5A + 7I = 0, where I is a 2 x 2 unit matrix.
Find x and y, if `{4[(2, -1, 3),(1, 0, 2)] - [(3, -3, 4),(2, 1, 1)]}[(2),(-1),(1)] = [(x),(y)]`
Find x, y, x, if `{3[(2, 0),(0, 2),(2, 2)] -4[(1, 1),(-1, 2),(3, 1)]} [(1),(2)] = [(x - 3),(y - 1),(2z)]`.
Choose the correct alternative.
If A and B are square matrices of order n × n such that A2 – B2 = (A – B)(A + B), then which of the following will be always true?
Solve the following :
If A = `[(2, 5),(3, 7)], "B" = 4[(1, 7),(-3, 0)]`, find matrix A – 4B + 7I, where I is the unit matrix of order 2.
Solve the following :
If A = `[(3, 1),(1, 5)], "B" = [(1, 2),(5, -2)]`, verify |AB| = |A| |B|.
Solve the following :
If A = `[(2, -1),(-1, 2)]`, then show that A2 – 4A + 3I = 0.
Solve the following :
if A = `[(1, 2),(-1, 3)]`, then find A3.
Solve the following :
If A = `[(2, -4),(3, -2),(0, 1)], "B" = [(1, -1, 2),(-2, 1, 0)]`, then show that (AB)T = BTAT.
If A = `[(2, 1),(0, 3),(1, -1)]` and B = `[(0, 3, 5),(1, -7, 2)]`, then verify (BA)T = ATBT
If A = `[(3, 1),(1, 5)]` and B = `[(1, 2),(5, -2)]`, then verify |AB| = |A||B|