English

Solve the following : If A = [2-1-12], then show that A2 – 4A + 3I = 0. - Mathematics and Statistics

Advertisements
Advertisements

Question

Solve the following :

If A = `[(2, -1),(-1, 2)]`, then show that A2 – 4A + 3I = 0.

Sum

Solution

A2 – 4A + 3I
= A.A – 4A + 3I 

= `[(2, -1),(-1, 2)] [(2, -1),(-1, 2)] -4[(2, -1),(-1, 2)] + 3[(1, 0),(0, 1)]`

= `[(4 + 1, -2 -2),(-2 - 2, 1 + 4)] - [(8, -4),(-4, 8)] + [(3, 0),(0, 3)]`

= `[(5, -4),(-4, 5)] - [(8, -4),(-4, 8)] + [(3, 0),(0, 3)]`

= `[(5 - 8 + 3, -4 + 4 + 0),(-4 + 4 + 0, 5 - 8 + 3)]`

= `[(0, 0),(0, 0)]`

= 0.

shaalaa.com
Properties of Matrices
  Is there an error in this question or solution?
Chapter 2: Matrices - Miscellaneous Exercise 2 [Page 84]

APPEARS IN

RELATED QUESTIONS

If A = `[(-1, 1, 1),(2, 3, 0),(1, -3, 1)],"B" = [(2, 1, 4),(3, 0, 2),(1, 2, 1)]`, state whether AB = BA? Justify your answer.


Show that AB = BA, where A = `[(-2, 3, -1),(-1, 2, -1),(-6, 9, -4)],"B" = [(1, 3, -1),(2, 2, -1),(3, 0, -1)]`.


Verify that A(B + C) = AB + AC, if A = `[(4, -2),(2, 3)], "B" = [(-1, 1),(3, -2)] " and C" = [(4 ,1),(2, -1)]`.


If  A = `[(4, 3, 2),(-1, 2, 0)],"B" = [(1, 2),(-1, 0),(1, -2)]` show that matrix AB is non singular.


If A = `[(3, 1),(-1, 2)]`, prove that A2 – 5A + 7I = 0, where I is a 2 x 2 unit matrix.


Find k, if A = `[(3, -2),(4, -2)]` and A2 = kA – 2I.


Find x and y, if `{4[(2, -1, 3),(1, 0, 2)] - [(3, -3, 4),(2, 1, 1)]}[(2),(-1),(1)] = [(x),(y)]`


Find x, y, x, if `{3[(2, 0),(0, 2),(2, 2)] -4[(1, 1),(-1, 2),(3, 1)]} [(1),(2)] = [(x - 3),(y - 1),(2z)]`.


Choose the correct alternative.

If A and B are square matrices of order n × n such that A2 – B2 = (A – B)(A + B), then which of the following will be always true?


Solve the following :

If A = `[(2, 5),(3, 7)], "B" = 4[(1, 7),(-3, 0)]`, find matrix A – 4B + 7I, where I is the unit matrix of order 2.


Solve the following :

If A = `[(1, 5),(7, 8),(9, 5)], "B" = [(2, 4),(1, 5),(-8, 6)] "C" = [(-2, 3),(1, -5),(7, 8)]` then show that (A + B) + C = A + (B + C).


Solve the following :

If A = `[(1, 2, 3),(2, 4, 6),(1, 2, 3)],"B" = [(1, -1, 1),(-3, 2, -1),(-2, 1, 0)]`, then show that AB and BA are bothh singular martices.


Solve the following :

if A = `[(1, 2),(-1, 3)]`, then find A3.


State whether the following statement is True or False:

If A = `[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`, then AT = A


If A = `[(1, -2),(5, 3)]`, B = `[(1, -3),(4, -7)]`, then A – 3B = ______


If A = `[(4, 3, 2),(-1, 2, 0)]`, B = `[(1, 2),(-1, 0),(1, -2)]`, then |AB| = ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×