Advertisements
Advertisements
Question
Find k, if A = `[(3, -2),(4, -2)]` and A2 = kA – 2I.
Solution
A2 = kA – 2I
∴ A.A + 2I = kA
∴ `[(3, -2),(4, -2)][(3, -2),(4, -2)] + 2[(1, 0),(0, 1)] = "k"[(3, -2),(4, -2)]`
∴ `[(9 - 8 ,-6 + 4),(12 - 8, -8 + 4)] + [(2, 0),(0, 2)] = [(3"k", -2"k"),(4"k", -2"k")]`
∴ `[(1, -2),(4, -4)] + [(2, 0),(0, 2)] = [(3"k", -2"k"),(4"k", -2"k")]`
∴ `[(1 + 2, -2 + 0),(4 + 0, -4 + 2)] = [(3"k", -2"k"),(4"k", -2"k")]`
∴ `[(3, -2),(4, -2)] = [(3"k", -2"k"),(4"k", -2"k")]`
∴ By equality of matrices, we get
3k = 3
∴ k = 1.
APPEARS IN
RELATED QUESTIONS
Evaluate : `[(3),(2),(1)][2 -4 3]`
Evaluate : `[2 - 1 3][(4),(3),(1)]`
If A = `[(-1, 1, 1),(2, 3, 0),(1, -3, 1)],"B" = [(2, 1, 4),(3, 0, 2),(1, 2, 1)]`, state whether AB = BA? Justify your answer.
Verify that A(B + C) = AB + AC, if A = `[(4, -2),(2, 3)], "B" = [(-1, 1),(3, -2)] " and C" = [(4 ,1),(2, -1)]`.
If A = `[(4, 3, 2),(-1, 2, 0)],"B" = [(1, 2),(-1, 0),(1, -2)]` show that matrix AB is non singular.
If A + I = `[(1, 2, 0),(5, 4, 2),(0, 7, -3)]`, find the product (A + I)(A − I).
If A = `[(3, 1),(-1, 2)]`, prove that A2 – 5A + 7I = 0, where I is a 2 x 2 unit matrix.
Find x and y, if `{4[(2, -1, 3),(1, 0, 2)] - [(3, -3, 4),(2, 1, 1)]}[(2),(-1),(1)] = [(x),(y)]`
Solve the following :
If A = `[(2, 5),(3, 7)], "B" = 4[(1, 7),(-3, 0)]`, find matrix A – 4B + 7I, where I is the unit matrix of order 2.
Solve the following :
If A = `[(1, 5),(7, 8),(9, 5)], "B" = [(2, 4),(1, 5),(-8, 6)] "C" = [(-2, 3),(1, -5),(7, 8)]` then show that (A + B) + C = A + (B + C).
Solve the following :
If A = `[(2, -3),(3, -2),(-1, 4)],"B" = [(-3, 4, 1),(2, -1, -3)]`, verify (A + 2BT)T = AT + 2B.
Solve the following :
If A = `[(1, 2, 3),(2, 4, 6),(1, 2, 3)],"B" = [(1, -1, 1),(-3, 2, -1),(-2, 1, 0)]`, then show that AB and BA are bothh singular martices.
Solve the following :
If A = `[(3, 1),(1, 5)], "B" = [(1, 2),(5, -2)]`, verify |AB| = |A| |B|.
Solve the following :
If A = `[(2, -1),(-1, 2)]`, then show that A2 – 4A + 3I = 0.
Solve the following :
If A = `[(-3, 2),(2, 4)], "B" = [(1, "a"), ("b", 0)]` and (A + B) (A – B) = A2 – B2, find a and b.
If A = `[(2, 1),(0, 3),(1, -1)]` and B = `[(0, 3, 5),(1, -7, 2)]`, then verify (BA)T = ATBT