Advertisements
Advertisements
Question
Jay and Ram are two friends. Jay wants to buy 4 pens and 8 notebooks, Ram wants to buy 5 pens and 12 notebooks. The price of one pen and one notebook was ₹ 6 and ₹ 10 respectively. Using matrix multiplication, find the amount each one of them requires for buying the pens and notebooks.
Solution
Let A be the matrix of pens and notebooks and B be the matrix od prices of one pen and one notebook.
Pens Notebooks
∴ A = `[(4, 8),(5, 12)]"jay"/"Ram"`
and B = `[(6),(10)]"Pen"/"Notebook"`
The total amount required for each one of them is obtained by matrix AB.
∴ AB = `[(4, 8),(5, 12)][(6),(10)]`
= `[(24 + 80),(30 + 120)]`
= `[(104),(150)]`
∴ Jay needs ₹ 104 and Ram needs ₹ 150.
APPEARS IN
RELATED QUESTIONS
Evaluate : `[(3),(2),(1)][2 -4 3]`
Evaluate : `[2 - 1 3][(4),(3),(1)]`
If A = `[(-1, 1, 1),(2, 3, 0),(1, -3, 1)],"B" = [(2, 1, 4),(3, 0, 2),(1, 2, 1)]`, state whether AB = BA? Justify your answer.
If A = `[(4, 3, 2),(-1, 2, 0)],"B" = [(1, 2),(-1, 0),(1, -2)]` show that matrix AB is non singular.
If A = `[(1, 2, 2),(2, 1, 2),(2, 2, 1)]`, show that A2 – 4A is a scalar matrix.
If A = `[(1, 0),(-1, 7)]`, find k, so that A2 – 8A – kI = O, where I is a 2 × 2 unit and O is null matrix of order 2.
If A = `[(3, 1),(-1, 2)]`, prove that A2 – 5A + 7I = 0, where I is a 2 x 2 unit matrix.
Find k, if A = `[(3, -2),(4, -2)]` and A2 = kA – 2I.
Find x and y, if `{4[(2, -1, 3),(1, 0, 2)] - [(3, -3, 4),(2, 1, 1)]}[(2),(-1),(1)] = [(x),(y)]`
Choose the correct alternative.
If A and B are square matrices of order n × n such that A2 – B2 = (A – B)(A + B), then which of the following will be always true?
Solve the following :
If A = `[(1, 5),(7, 8),(9, 5)], "B" = [(2, 4),(1, 5),(-8, 6)] "C" = [(-2, 3),(1, -5),(7, 8)]` then show that (A + B) + C = A + (B + C).
Solve the following :
If A = `[(-3, 2),(2, 4)], "B" = [(1, "a"), ("b", 0)]` and (A + B) (A – B) = A2 – B2, find a and b.
Solve the following :
If A = `[(2, -4),(3, -2),(0, 1)], "B" = [(1, -1, 2),(-2, 1, 0)]`, then show that (AB)T = BTAT.
If A = `[(2, 1),(0, 3),(1, -1)]` and B = `[(0, 3, 5),(1, -7, 2)]`, then verify (BA)T = ATBT
If A = `[(3, 1),(1, 5)]` and B = `[(1, 2),(5, -2)]`, then verify |AB| = |A||B|