मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Jay and Ram are two friends. Jay wants to buy 4 pens and 8 notebooks, Ram wants to buy 5 pens and 12 notebooks. The price of one pen and one notebook was ₹ 6 and ₹ 10 respectively. Using matrix multi - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Jay and Ram are two friends. Jay wants to buy 4 pens and 8 notebooks, Ram wants to buy 5 pens and 12 notebooks. The price of one pen and one notebook was ₹ 6 and ₹ 10 respectively. Using matrix multiplication, find the amount each one of them requires for buying the pens and notebooks.

बेरीज

उत्तर

Let A be the matrix of pens and notebooks and B be the matrix od prices of one pen and one notebook.
Pens Notebooks
∴ A = `[(4, 8),(5, 12)]"jay"/"Ram"`

and B = `[(6),(10)]"Pen"/"Notebook"`

The total amount required for each one of them is obtained by matrix AB.

∴ AB = `[(4, 8),(5, 12)][(6),(10)]`

= `[(24 + 80),(30 + 120)]`

= `[(104),(150)]`
∴ Jay needs ₹ 104 and Ram needs ₹ 150.

shaalaa.com
Properties of Matrices
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Matrices - Exercise 2.3 [पृष्ठ ५६]

संबंधित प्रश्‍न

Evaluate : `[2 - 1   3][(4),(3),(1)]`


Show that AB = BA, where A = `[(-2, 3, -1),(-1, 2, -1),(-6, 9, -4)],"B" = [(1, 3, -1),(2, 2, -1),(3, 0, -1)]`.


Verify A(BC) = (AB)C, if A = `[(1, 0, 1),(2, 3, 0),(0, 4, 5)], "B" = [(2, -2),(-1, 1),(0, 3)] and "C" = [(3,2,-1), (2,0,-2)]`


If  A = `[(4, 3, 2),(-1, 2, 0)],"B" = [(1, 2),(-1, 0),(1, -2)]` show that matrix AB is non singular.


If A + I = `[(1, 2, 0),(5, 4, 2),(0, 7, -3)]`, find the product (A + I)(A − I).


If A = `[(3, 1),(-1, 2)]`, prove that A2 – 5A + 7I = 0, where I is a 2 x 2 unit matrix.


Choose the correct alternative.

If A and B are square matrices of order n × n such that A2 – B2 = (A – B)(A + B), then which of the following will be always true?


Solve the following :

If A = `[(2, 5),(3, 7)], "B" = 4[(1, 7),(-3, 0)]`, find matrix A – 4B + 7I, where I is the unit matrix of order 2.


Solve the following :

If A = `[(1, 5),(7, 8),(9, 5)], "B" = [(2, 4),(1, 5),(-8, 6)] "C" = [(-2, 3),(1, -5),(7, 8)]` then show that (A + B) + C = A + (B + C).


Solve the following :

If A = `[(2, -3),(3, -2),(-1, 4)],"B" = [(-3, 4, 1),(2, -1, -3)]`, verify (A + 2BT)T = AT + 2B.


Solve the following :

If A = `[(1, 2, 3),(2, 4, 6),(1, 2, 3)],"B" = [(1, -1, 1),(-3, 2, -1),(-2, 1, 0)]`, then show that AB and BA are bothh singular martices.


Solve the following :

If A = `[(3, 1),(1, 5)], "B" = [(1, 2),(5, -2)]`, verify |AB| = |A| |B|.


Solve the following :

if A = `[(1, 2),(-1, 3)]`, then find A3.


Solve the following :

If A = `[(2, -4),(3, -2),(0, 1)], "B" = [(1, -1, 2),(-2, 1, 0)]`, then show that (AB)T = BTAT.


If A = `[(1, -2),(5, 3)]`, B = `[(1, -3),(4, -7)]`, then A – 3B = ______


If A = `[(4, 3, 2),(-1, 2, 0)]`, B = `[(1, 2),(-1, 0),(1, -2)]`, then |AB| = ______


If A = `[(2, 1),(0, 3),(1, -1)]` and B = `[(0, 3, 5),(1, -7, 2)]`, then verify (BA)T = ATBT


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×