मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Show that AB = BA, where A = [-23-1-12-1-69-4],B=[13-122-130-1]. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Show that AB = BA, where A = `[(-2, 3, -1),(-1, 2, -1),(-6, 9, -4)],"B" = [(1, 3, -1),(2, 2, -1),(3, 0, -1)]`.

बेरीज

उत्तर

AB = `[(-2, 3, -1),(-1, 2, -1),(-6, 9, -4)][(1, 3, -1),(2, 2, -1),(3, 0, -1)]`

= `[(-2 + 6 - 3, -6 + 6 - 0, 2 - 3 + 1),(-1 + 4 - 3, -3 + 4 - 0, 1 - 2 + 1),(-6 + 18 - 12, -18 + 18 + 0, 6 - 9 + 4)]`

∴ AB = `[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`         ...(i)

BA = `[(1, 3, -1),(2, 2, -1),(3, 0, -1)][(-2, 3, -1),(-1, 2, -1),(-6, 9, -4)]`

= `[(2 - 3 + 6, 3 + 6 - 9, -1 - 3 + 4),(-4 - 2 + 6, 6 + 4 - 9, -2 - 2 + 4),(-6 + 0 + 6, 9 + 0 - 9, 3 + 0 + 4)]`

∴ BA = `[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`       ...(ii)

From (i) and (ii), we get
AB = BA.

shaalaa.com
Properties of Matrices
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Matrices - Exercise 2.3 [पृष्ठ ५५]

संबंधित प्रश्‍न

Evaluate : `[(3),(2),(1)][2  -4   3]`


Verify A(BC) = (AB)C, if A = `[(1, 0, 1),(2, 3, 0),(0, 4, 5)], "B" = [(2, -2),(-1, 1),(0, 3)] and "C" = [(3,2,-1), (2,0,-2)]`


If  A = `[(4, 3, 2),(-1, 2, 0)],"B" = [(1, 2),(-1, 0),(1, -2)]` show that matrix AB is non singular.


If A + I = `[(1, 2, 0),(5, 4, 2),(0, 7, -3)]`, find the product (A + I)(A − I).


If A = `[(1, 0),(-1, 7)]`, find k, so that A2 – 8A – kI = O, where I is a 2 × 2 unit and O is null matrix of order 2.


If A = `[(3, 1),(-1, 2)]`, prove that A2 – 5A + 7I = 0, where I is a 2 x 2 unit matrix.


Find k, if A = `[(3, -2),(4, -2)]` and A2 = kA – 2I.


Find x, y, x, if `{3[(2, 0),(0, 2),(2, 2)] -4[(1, 1),(-1, 2),(3, 1)]} [(1),(2)] = [(x - 3),(y - 1),(2z)]`.


Choose the correct alternative.

If A and B are square matrices of order n × n such that A2 – B2 = (A – B)(A + B), then which of the following will be always true?


Solve the following :

If A = `[(2, -3),(3, -2),(-1, 4)],"B" = [(-3, 4, 1),(2, -1, -3)]`, verify (A + 2BT)T = AT + 2B.


Solve the following :

If A = `[(1, 2, 3),(2, 4, 6),(1, 2, 3)],"B" = [(1, -1, 1),(-3, 2, -1),(-2, 1, 0)]`, then show that AB and BA are bothh singular martices.


Solve the following :

If A = `[(2, -1),(-1, 2)]`, then show that A2 – 4A + 3I = 0.


Solve the following :

If A = `[(-3, 2),(2, 4)], "B" = [(1, "a"), ("b", 0)]` and (A + B) (A – B) = A2 – B2, find a and b.


Solve the following :

If A = `[(2, -4),(3, -2),(0, 1)], "B" = [(1, -1, 2),(-2, 1, 0)]`, then show that (AB)T = BTAT.


State whether the following statement is True or False:

If A = `[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`, then AT = A


If A = `[(4, 3, 2),(-1, 2, 0)]`, B = `[(1, 2),(-1, 0),(1, -2)]`, then |AB| = ______


If A = `[(3, 1),(1, 5)]` and B = `[(1, 2),(5, -2)]`, then verify |AB| = |A||B|


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×