Advertisements
Advertisements
प्रश्न
Verify A(BC) = (AB)C, if A = `[(1, 0, 1),(2, 3, 0),(0, 4, 5)], "B" = [(2, -2),(-1, 1),(0, 3)] and "C" = [(3,2,-1), (2,0,-2)]`
उत्तर
BC = `[(2, -2),(-1, 1),(0, 3)][(3, 2, -1),(2, 0, -2)]`
= `[(6 - 4, 4 + 0, -2 + 4),(-3 + 2, -2 + 0, 1 - 2),(0 + 6, 0 + 0, 0 - 6)]`
= `[(2, 4, 2),(-1, -2, -1),(6, 0, -6)]`
∴ A(BC) = `[(1, 0, 1),(2, 3, 0),(0, 4, 5)][(2, 4, 2),(-1, -2, -1),(6, 0, -6)]`
= `[(2 + 0 + 6, 4 + 0 + 0, 2 + 0 - 6),(4 - 3 + 0, 8 - 6 + 0, 4 - 3 + 0),(0 - 4 + 30, 0 - 8 + 0, 0 - 4 - 30)]`
∴ A(BC) = `[(8, 4, -4),(1, 2, 1),(26, -8, -34)]` ...(i)
AB = `[(1, 0, 1),(2, 3, 0),(0, 4, 5)][(2, -2),(-1, 1),(0, 3)]`
= `[(2 + 0 + 0, -2 + 0 + 3),(4 - 3 + 0, -4 + 3 + 0),(0 - 4 + 0, 0 + 4 + 15)]`
= `[(2, 1),(1, -1),(-4, 19)]`
∴ (AB)C = `[(2, 1),(1, -1),(-4, 19)][(3, 2, -1),(2, 0, -2)]`
= `[(6 + 2, 4 + 0, -2 - 2),(3 - 2, 2 + 0, -1 + 2),(-12 + 38, -8 + 0 , 4 - 38)]`
∴ (AB)C = `[(8, 4, -4),(1, 2, 1),(26, -8, -34)]` ...(ii)
From (i) and (ii), we get
A(BC) = (AB)C
APPEARS IN
संबंधित प्रश्न
Evaluate : `[(3),(2),(1)][2 -4 3]`
Evaluate : `[2 - 1 3][(4),(3),(1)]`
If A = `[(-1, 1, 1),(2, 3, 0),(1, -3, 1)],"B" = [(2, 1, 4),(3, 0, 2),(1, 2, 1)]`, state whether AB = BA? Justify your answer.
If A = `[(4, 3, 2),(-1, 2, 0)],"B" = [(1, 2),(-1, 0),(1, -2)]` show that matrix AB is non singular.
If A + I = `[(1, 2, 0),(5, 4, 2),(0, 7, -3)]`, find the product (A + I)(A − I).
If A = `[(1, 0),(-1, 7)]`, find k, so that A2 – 8A – kI = O, where I is a 2 × 2 unit and O is null matrix of order 2.
If A = `[(3, 1),(-1, 2)]`, prove that A2 – 5A + 7I = 0, where I is a 2 x 2 unit matrix.
Find k, if A = `[(3, -2),(4, -2)]` and A2 = kA – 2I.
Find x, y, x, if `{3[(2, 0),(0, 2),(2, 2)] -4[(1, 1),(-1, 2),(3, 1)]} [(1),(2)] = [(x - 3),(y - 1),(2z)]`.
Solve the following :
If A = `[(2, 5),(3, 7)], "B" = 4[(1, 7),(-3, 0)]`, find matrix A – 4B + 7I, where I is the unit matrix of order 2.
Solve the following :
If A = `[(1, 5),(7, 8),(9, 5)], "B" = [(2, 4),(1, 5),(-8, 6)] "C" = [(-2, 3),(1, -5),(7, 8)]` then show that (A + B) + C = A + (B + C).
Solve the following :
If A = `[(3, 1),(1, 5)], "B" = [(1, 2),(5, -2)]`, verify |AB| = |A| |B|.
Solve the following :
If A = `[(2, -1),(-1, 2)]`, then show that A2 – 4A + 3I = 0.
Solve the following :
if A = `[(1, 2),(-1, 3)]`, then find A3.
Solve the following :
If A = `[(2, -4),(3, -2),(0, 1)], "B" = [(1, -1, 2),(-2, 1, 0)]`, then show that (AB)T = BTAT.
If A = `[(1, -2),(5, 3)]`, B = `[(1, -3),(4, -7)]`, then A – 3B = ______
If matrix form of given equations 3x – y = 1 and y + 4x = 6 is AX = B, then A = ______
If A = `[(3, 1),(1, 5)]` and B = `[(1, 2),(5, -2)]`, then verify |AB| = |A||B|