Advertisements
Advertisements
प्रश्न
Verify that A(B + C) = AB + AC, if A = `[(4, -2),(2, 3)], "B" = [(-1, 1),(3, -2)] " and C" = [(4 ,1),(2, -1)]`.
उत्तर
A(B + C) = `[(4, -2),(2, 3)]{[(-1, 1),(3, -2)] + [(4 ,1),(2, -1)]}`
= `[(4, -2),(2, 3)] [(-1 + 4, 1 + 1),(3 + 2, -2 - 1)]`
= `[(4, -2),(2, 3)] [(3, 2),(5, -3)]`
= `[(12 - 10, 8 + 6),(6 + 15, 4 - 9)]`
= `[(2, 14),(21, -5)]` ...(i)
AB + AC = `[(4, -2),(2, 3)][(-1, 1),(3, -2)] + [(4, -2),(2, 3)][(4, 1),(2 ,-1)]`
= `[(-4 - 6, 4 + 4),(-2 + 9, 2 - 6)] + [(16 - 4, 4 + 2),(8 + 6, 2 - 3)]`
= `[(-10, 8),(7, -4)] + [(12, 6),(14, -1)]`
= `[(-10 + 12, 8 + 6),(7 + 14, -4 - 1)]`
= `[(2, 14),(21, -5)]` ...(ii)
From (i) and (ii), we get
A(B + C) = AB + AC.
APPEARS IN
संबंधित प्रश्न
Evaluate : `[(3),(2),(1)][2 -4 3]`
Verify A(BC) = (AB)C, if A = `[(1, 0, 1),(2, 3, 0),(0, 4, 5)], "B" = [(2, -2),(-1, 1),(0, 3)] and "C" = [(3,2,-1), (2,0,-2)]`
If A + I = `[(1, 2, 0),(5, 4, 2),(0, 7, -3)]`, find the product (A + I)(A − I).
If A = `[(1, 2, 2),(2, 1, 2),(2, 2, 1)]`, show that A2 – 4A is a scalar matrix.
If A = `[(1, 0),(-1, 7)]`, find k, so that A2 – 8A – kI = O, where I is a 2 × 2 unit and O is null matrix of order 2.
If A = `[(3, 1),(-1, 2)]`, prove that A2 – 5A + 7I = 0, where I is a 2 x 2 unit matrix.
Find k, if A = `[(3, -2),(4, -2)]` and A2 = kA – 2I.
Find x, y, x, if `{3[(2, 0),(0, 2),(2, 2)] -4[(1, 1),(-1, 2),(3, 1)]} [(1),(2)] = [(x - 3),(y - 1),(2z)]`.
Choose the correct alternative.
If A and B are square matrices of order n × n such that A2 – B2 = (A – B)(A + B), then which of the following will be always true?
Solve the following :
If A = `[(1, 5),(7, 8),(9, 5)], "B" = [(2, 4),(1, 5),(-8, 6)] "C" = [(-2, 3),(1, -5),(7, 8)]` then show that (A + B) + C = A + (B + C).
Solve the following :
If A = `[(2, -3),(3, -2),(-1, 4)],"B" = [(-3, 4, 1),(2, -1, -3)]`, verify (A + 2BT)T = AT + 2B.
Solve the following :
If A = `[(1, 2, 3),(2, 4, 6),(1, 2, 3)],"B" = [(1, -1, 1),(-3, 2, -1),(-2, 1, 0)]`, then show that AB and BA are bothh singular martices.
Solve the following :
If A = `[(3, 1),(1, 5)], "B" = [(1, 2),(5, -2)]`, verify |AB| = |A| |B|.
Solve the following :
If A = `[(-3, 2),(2, 4)], "B" = [(1, "a"), ("b", 0)]` and (A + B) (A – B) = A2 – B2, find a and b.
State whether the following statement is True or False:
If A = `[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`, then AT = A
If A = `[(1, -2),(5, 3)]`, B = `[(1, -3),(4, -7)]`, then A – 3B = ______
If A = `[(2, 1),(0, 3),(1, -1)]` and B = `[(0, 3, 5),(1, -7, 2)]`, then verify (BA)T = ATBT