Advertisements
Advertisements
प्रश्न
If A = `[(1, 2, 2),(2, 1, 2),(2, 2, 1)]`, show that A2 – 4A is a scalar matrix.
उत्तर
A2 – 4A = A.A – 4A
= `[(1, 2, 2),(2, 1, 2),(2, 2, 1)][(1, 2, 2),(2, 1, 2),(2, 2, 1)] - 4[(1, 2, 2),(2, 1, 2),(2, 2, 1)]`
= `[(1 + 4 + 4, 2 + 2 + 4, 2 + 4 + 2),(2 + 2 + 4, 4 + 1 + 4, 4+ 2 + 2),(2 + 4 + 2, 4 + 2 + 2, 4 + 4 + 1)] - [(4, 8, 8),(8, 4, 8),(8, 8, 4)]`
= `[(9, 8, 8),(8, 9, 8),(8, 8, 9)] - [(4, 8, 8),(8, 4, 8),(8, 8, 4)]`
= `[(9 - 4, 8 - 8, 8 - 8),(8 - 8, 9 - 4, 8 - 8),(8 - 8, 8 - 8, 9 - 4)]`
= `[(5, 0, 0),(0, 5, 0),(0, 0, 5)]`, which is a scalar martix.
APPEARS IN
संबंधित प्रश्न
If A = `[(-1, 1, 1),(2, 3, 0),(1, -3, 1)],"B" = [(2, 1, 4),(3, 0, 2),(1, 2, 1)]`, state whether AB = BA? Justify your answer.
Show that AB = BA, where A = `[(-2, 3, -1),(-1, 2, -1),(-6, 9, -4)],"B" = [(1, 3, -1),(2, 2, -1),(3, 0, -1)]`.
If A + I = `[(1, 2, 0),(5, 4, 2),(0, 7, -3)]`, find the product (A + I)(A − I).
If A = `[(1, 0),(-1, 7)]`, find k, so that A2 – 8A – kI = O, where I is a 2 × 2 unit and O is null matrix of order 2.
If A = `[(3, 1),(-1, 2)]`, prove that A2 – 5A + 7I = 0, where I is a 2 x 2 unit matrix.
Find x, y, x, if `{3[(2, 0),(0, 2),(2, 2)] -4[(1, 1),(-1, 2),(3, 1)]} [(1),(2)] = [(x - 3),(y - 1),(2z)]`.
Solve the following :
If A = `[(2, -3),(3, -2),(-1, 4)],"B" = [(-3, 4, 1),(2, -1, -3)]`, verify (A + 2BT)T = AT + 2B.
Solve the following :
If A = `[(3, 1),(1, 5)], "B" = [(1, 2),(5, -2)]`, verify |AB| = |A| |B|.
Solve the following :
If A = `[(2, -1),(-1, 2)]`, then show that A2 – 4A + 3I = 0.
Solve the following :
If A = `[(-3, 2),(2, 4)], "B" = [(1, "a"), ("b", 0)]` and (A + B) (A – B) = A2 – B2, find a and b.
Solve the following :
if A = `[(1, 2),(-1, 3)]`, then find A3.
Solve the following :
If A = `[(2, -4),(3, -2),(0, 1)], "B" = [(1, -1, 2),(-2, 1, 0)]`, then show that (AB)T = BTAT.
State whether the following statement is True or False:
If A = `[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`, then AT = A
If A = `[(4, 3, 2),(-1, 2, 0)]`, B = `[(1, 2),(-1, 0),(1, -2)]`, then |AB| = ______
If matrix form of given equations 3x – y = 1 and y + 4x = 6 is AX = B, then A = ______
If A = `[(3, 1),(1, 5)]` and B = `[(1, 2),(5, -2)]`, then verify |AB| = |A||B|