मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

If A = [31-12], prove that A2 – 5A + 7I = 0, where I is a 2 x 2 unit matrix. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If A = `[(3, 1),(-1, 2)]`, prove that A2 – 5A + 7I = 0, where I is a 2 x 2 unit matrix.

बेरीज

उत्तर

A2 – 5A + 7I = A.A – 5A + 7I 

= `[(3, 1),(-1, 2)][(3, 1),(-1, 2)] 5[(3, 1),(-1, 2)] + 7[(1, 0),(0, 1)]`

= `[(9 - 1, 3 + 2),(-3 - 2, -1 + 4)]  [(15, 5),(-5, 10)] + [(7, 0),(0, 7)]`

= `[(8, 5),(-5, 3)] - [(15, 5),(-5, 10)] + [(7, 0),(0, 7)]`

= `[(8 - 15 + 7, 5 - 5 + 0),(-5 + 5 + 0, 3 - 10 + 7)]`

= `[(0, 0),(0, 0)]`

= 0.

shaalaa.com
Properties of Matrices
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Matrices - Exercise 2.3 [पृष्ठ ५६]

संबंधित प्रश्‍न

Evaluate : `[(3),(2),(1)][2  -4   3]`


Verify A(BC) = (AB)C, if A = `[(1, 0, 1),(2, 3, 0),(0, 4, 5)], "B" = [(2, -2),(-1, 1),(0, 3)] and "C" = [(3,2,-1), (2,0,-2)]`


Verify that A(B + C) = AB + AC, if A = `[(4, -2),(2, 3)], "B" = [(-1, 1),(3, -2)] " and C" = [(4 ,1),(2, -1)]`.


If  A = `[(4, 3, 2),(-1, 2, 0)],"B" = [(1, 2),(-1, 0),(1, -2)]` show that matrix AB is non singular.


If A = `[(1, 0),(-1, 7)]`, find k, so that A2 – 8A – kI = O, where I is a 2 × 2 unit and O is null matrix of order 2.


Find k, if A = `[(3, -2),(4, -2)]` and A2 = kA – 2I.


Find x, y, x, if `{3[(2, 0),(0, 2),(2, 2)] -4[(1, 1),(-1, 2),(3, 1)]} [(1),(2)] = [(x - 3),(y - 1),(2z)]`.


Choose the correct alternative.

If A and B are square matrices of order n × n such that A2 – B2 = (A – B)(A + B), then which of the following will be always true?


Solve the following :

If A = `[(1, 5),(7, 8),(9, 5)], "B" = [(2, 4),(1, 5),(-8, 6)] "C" = [(-2, 3),(1, -5),(7, 8)]` then show that (A + B) + C = A + (B + C).


Solve the following :

If A = `[(2, -1),(-1, 2)]`, then show that A2 – 4A + 3I = 0.


Solve the following :

If A = `[(-3, 2),(2, 4)], "B" = [(1, "a"), ("b", 0)]` and (A + B) (A – B) = A2 – B2, find a and b.


Solve the following :

If A = `[(2, -4),(3, -2),(0, 1)], "B" = [(1, -1, 2),(-2, 1, 0)]`, then show that (AB)T = BTAT.


State whether the following statement is True or False:

If A = `[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`, then AT = A


If matrix form of given equations 3x – y = 1 and y + 4x = 6 is AX = B, then A = ______


If A = `[(2, 1),(0, 3),(1, -1)]` and B = `[(0, 3, 5),(1, -7, 2)]`, then verify (BA)T = ATBT


If A = `[(3, 1),(1, 5)]` and B = `[(1, 2),(5, -2)]`, then verify |AB| = |A||B|


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×