मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

If A = [10-17], find k so that A2 – 8A – kI = O, where I is a 2 × 2 unit and O is null matrix of order 2. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If A = `[(1, 0),(-1, 7)]`, find k, so that A2 – 8A – kI = O, where I is a 2 × 2 unit and O is null matrix of order 2.

बेरीज

उत्तर

A2 – 8A – kI = O                    ...(Given)

`"I" = [(1, 0),(0, 1)], "O" = [(0, 0),(0, 0)], "and  A" = [(1, 0),(-1, 7)]`

A= A.A
= `[(1, 0),(-1, 7)].[(1, 0),(-1, 7)]`

= `[(1 + 0, 0 + 0), (– 1  –  7, 0  + 49)]`

= `[(1, 0),(-8, 49)]`

∴ A2 – 8A – kI = O   

∴ `[(1, 0),(–8, 49)] –  8[(1, 0),(–1, 7)] –  "k"[(1, 0),(0, 1)] = [(0, 0),(0, 0)]`

∴ `[(1, 0),(–8, 49)] – [(8, 0),(–8, 56)] – [("k", 0),(0, "k")] = [(0, 0),(0, 0)]`

∴ `[(1  –  8  –  "k",0  –  0  –  0),(– 8 + 8  –  0, 49  –  56  –  "k")] = [(0, 0),(0, 0)]`

∴ Using definition of equality of matrices, we have,

∴ 1  –  8  – k = 0

∴ – 7 – k = 0

∴ k = – 7

shaalaa.com
Properties of Matrices
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Matrices - Exercise 2.3 [पृष्ठ ५६]

संबंधित प्रश्‍न

If A = `[(-1, 1, 1),(2, 3, 0),(1, -3, 1)],"B" = [(2, 1, 4),(3, 0, 2),(1, 2, 1)]`, state whether AB = BA? Justify your answer.


Verify A(BC) = (AB)C, if A = `[(1, 0, 1),(2, 3, 0),(0, 4, 5)], "B" = [(2, -2),(-1, 1),(0, 3)] and "C" = [(3,2,-1), (2,0,-2)]`


If  A = `[(4, 3, 2),(-1, 2, 0)],"B" = [(1, 2),(-1, 0),(1, -2)]` show that matrix AB is non singular.


Find k, if A = `[(3, -2),(4, -2)]` and A2 = kA – 2I.


Find x and y, if `{4[(2, -1, 3),(1, 0, 2)] - [(3, -3, 4),(2, 1, 1)]}[(2),(-1),(1)] = [(x),(y)]`


Jay and Ram are two friends. Jay wants to buy 4 pens and 8 notebooks, Ram wants to buy 5 pens and 12 notebooks. The price of one pen and one notebook was ₹ 6 and ₹ 10 respectively. Using matrix multiplication, find the amount each one of them requires for buying the pens and notebooks.


Solve the following :

If A = `[(1, 2, 3),(2, 4, 6),(1, 2, 3)],"B" = [(1, -1, 1),(-3, 2, -1),(-2, 1, 0)]`, then show that AB and BA are bothh singular martices.


Solve the following :

If A = `[(2, -1),(-1, 2)]`, then show that A2 – 4A + 3I = 0.


Solve the following :

If A = `[(-3, 2),(2, 4)], "B" = [(1, "a"), ("b", 0)]` and (A + B) (A – B) = A2 – B2, find a and b.


Solve the following :

if A = `[(1, 2),(-1, 3)]`, then find A3.


Solve the following :

If A = `[(2, -4),(3, -2),(0, 1)], "B" = [(1, -1, 2),(-2, 1, 0)]`, then show that (AB)T = BTAT.


State whether the following statement is True or False:

If A = `[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`, then AT = A


If A = `[(4, 3, 2),(-1, 2, 0)]`, B = `[(1, 2),(-1, 0),(1, -2)]`, then |AB| = ______


If A = `[(2, 1),(0, 3),(1, -1)]` and B = `[(0, 3, 5),(1, -7, 2)]`, then verify (BA)T = ATBT


If A = `[(3, 1),(1, 5)]` and B = `[(1, 2),(5, -2)]`, then verify |AB| = |A||B|


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×