हिंदी

If Abcd is a Parallelogram, Then Prove that 𝑎𝑟 (δ𝐴𝐵𝐷) = 𝑎𝑟 (δ𝐵𝐶𝐷) = 𝑎𝑟 (δ𝐴𝐵𝐶) = 𝑎𝑟 (δ𝐴𝐶𝐷) = `1/2` 𝑎𝑟 (||𝑔𝑚 𝐴𝐵𝐶𝐷) . - Mathematics

Advertisements
Advertisements

प्रश्न

If ABCD is a parallelogram, then prove that
𝑎𝑟 (Δ𝐴𝐵𝐷) = 𝑎𝑟 (Δ𝐵𝐶𝐷) = 𝑎𝑟 (Δ𝐴𝐵𝐶) = 𝑎𝑟 (Δ𝐴𝐶𝐷) = `1/2` 𝑎𝑟 (||𝑔𝑚 𝐴𝐵𝐶𝐷) .

उत्तर

Given: ABCDis a parallelogram
To prove : area  (Δ𝐴𝐵𝐷) = 𝑎𝑟 (ΔA𝐵𝐶) = are  (Δ ACD)

 = `1/2` 𝑎𝑟 (||𝑔𝑚 𝐴𝐵𝐶𝐷)

Proof: we know that diagonals of a parallelogram divides it into two equilaterals.
Since, AC is the diagonal.

Then, 𝑎𝑟 (Δ𝐴𝐵𝐶) =   (Δ ACD) = `1/2` 𝑎𝑟 (||𝑔𝑚 𝐴𝐵𝐶𝐷)............ (1)

Since, BD is the diagonal

Then, 𝑎𝑟 (Δ𝐴𝐵𝐶) = 𝑎𝑟 (Δ𝐵𝐶𝐷)  = `1/2` 𝑎𝑟 (||𝑔𝑚 𝐴𝐵𝐶𝐷)............ (2)

Compare equation (1) and (2)

∴ 𝑎𝑟 (Δ𝐴𝐵𝐶) =  𝑎𝑟 (Δ𝐴𝐶𝐷)

 = 𝑎𝑟 (Δ𝐴𝐵𝐷) =  𝑎𝑟 (Δ𝐵𝐶𝐷) =   `1/2` 𝑎𝑟 (||𝑔𝑚 𝐴𝐵𝐶𝐷)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Areas of Parallelograms and Triangles - Exercise 14.2 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
अध्याय 14 Areas of Parallelograms and Triangles
Exercise 14.2 | Q 4 | पृष्ठ १५
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×